496IHSSF3420

DocumentID

NONCD0002738

Site Name

WILSON PEST CONTROL

DocumentType

Progress/Monitoring Rpt (PRGMON)

RptSegment

DocDate

11/14/2011

DocRcvd

11/15/2011

Вох

SF3420

AccessLevel

PUBLIC

Division

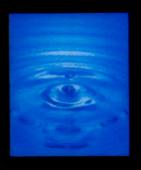
WASTE MANAGEMENT

Section

SUPERFUND

Program

IHS (IHS)


DocCat

FACILITY

OUR CLIENTS DEMAND A SMARTER SOLUTION

RECEIVED N.C. Dept. County

NOV 15 2011

Winston-Salam Regional Office Hart & Hickman, PC 2923 South Tryon Street Suite 100 Charlotte, NC 28203-5449

704-586-0007 phone 704-586-0373 fax www.harthickman.com

Via FedEx

November 14, 2011

NC DENR – DWM Inactive Hazardous Sites Branch 585 Waughtown Street Winston-Salem, NC 27017

Attention:

Mr. Collin Day

Re:

Ground Water Monitoring Report

401 West End Blvd. Property Winston-Salem, North Carolina

H&H Job No. BDP-005

Dear Mr. Day:

Per your request, we are providing the attached Ground Water Monitoring Report for the above referenced site. Surface water and sediment sample results from Peters Creek are included. Should you have any questions or need additional information, please do not hesitate to contact me at (704) 586-0007.

Very truly yours,

Hart & Hickman, PC

Matt Bramblett, PE

Principal and Project Manger

Attachments

Cc: Mr. Don Nielsen, BDP (2 copies via mail and PDF via email)

Ground Water Monitoring Report Former Wilson Pest Control Winston-Salem, North Carolina

H&H Job No. BDP-005

November 14, 2011

N.C. Dept. of ENR

NOV 1 5 2011

Wington Salam Regional Office

2923 South Tryon Street Suite 100 Charlotte, NC 28203 704-586-0007

3334 Hillsborough Street Raleigh, NC 27607 919-847-4241

#C-1269 Engineering #C-245 Geology

Table of Contents

Section	Page No
1.0 Introduce	tion
1.1 Site His	story
1.2 Initial L	ow Turbidity Sampling Events
1.3 Reques	t for Additional Monitoring
2.0 Ground	Water/Surface Water Monitoring
2.1 Ground	Water Levels and Flow Direction
2.2 Ground	Water Sampling
2.3 Surface	Water and Sediment Sampling
3.0 Summar	y
	<u>List of Tables</u>
Table 1	Monitoring Well Construction and Water Level Data Summary
Table 2	Ground Water Analytical Detections
Table 3	Peters Creek Surface Water and Sediment Data Summary
	<u>List of Figures</u>
Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Potentiometric Surface Map
Figure 4	Dieldrin Isoconcentration Map
	List of Appendices
Appendix A	Laboratory Analytical Data
Appendix B	Laboratory Explanation Letter on Chlordane

Ground Water Monitoring Report Former Wilson Pest Control Property Winston-Salem, North Carolina H&H Job No. BDP-005

1.0 Introduction

Hart & Hickman, PC (H&H) has completed ground water monitoring activities at the former Wilson Pest Control property located at 401 West End Boulevard in Winston-Salem, NC (Figure 1). A site map is provided as Figure 2. This report was prepared on behalf of Mr. Hugh Wilson III c/o Bell Davis and Pitt.

1.1 Site History

Soil and ground water impacts are present at the property which formerly occupied by the Wilson Pest Control business. The property was purchased in 1952 to develop a pest control business. Wilson Pest Control operated until 1996. While Mr. Hugh Wilson, III currently owns the subject property, the property was previously leased to Wilson Pest Defense, a division of Centex Pest Management. Mr. Wilson did not work for or own Wilson Pest Defense. The site is currently vacant.

1.2 Previous Sampling Events

Low Turbidity Sampling

H&H began monitoring the former Wilson Pest Control property in September 2006, although previous groundwater monitoring had been conducted at this site by others. H&H scheduled another monitoring event in February 2007 at the request of the North Carolina Department of Environment and Natural Resources (DENR) Aquifer Protection Section (APS) in a letter dated October 9, 2006. During the 2006 and 2007 sampling events, H&H obtained samples using low-flow purging with a peristaltic pump to minimize turbidity. Because pesticides adhere to sediment, dissolved-phase pesticide concentrations can be overstated if special attention is not

given to obtaining low turbidity samples. The US EPA recommends turbidity readings to be 10 NTUs or less for this type of sampling.

Samples from each well were analyzed for non-filtered and filtered chlorinated pesticides in September 2006. However, in February 2007, all samples were analyzed for non-filtered chlorinated pesticides only, with the exception of MW-1 because the depth of water did not allow for low-flow purging techniques. MW-1 was sampled for filtered chlorinated pesticides in February 2007. Non-filtered samples from the subject site contained 1.36 to 12.06 NTUs, and the filtered samples contained 0.72 to 4.5 NTUs (Table 2). The water samples were visually clear, and the above numbers indicate that samples were low turbidity samples.

Chlorinated pesticides were detected above North Carolina ground water standards, as defined in 15A NCAC 2L regulations, in only two of the seven monitoring wells during the 2006 and 2007 monitoring events (Table 2). Chlordane was detected above its ground water standard of 0.1 μ g/l in MW-3 at 1.6 μ g/l (2006) and 1.16 μ g/l (2007), and MW-7 at 5.25 μ g/l (2006) and 5.02 μ g/l (2007). Dieldrin was also detected above its standard of 0.002 μ g/l in MW-7 at 8.34 μ g/l (2006) and 6.97 μ g/l (2007). No other chlorinated pesticide detections exceeded ground water standards.

Additional Groundwater Sampling

DENR requested a groundwater sampling event in 2009 and H&H conducted the event. Because of the irregular timing of the sampling events and because the site became vacant, the hazardous waste generator status had been discontinued. Therefore, H&H sought a no purge sampling method that does not generate hazardous waste. H&H used HydraSleeve no purge samplers with DENR's approval. The sampling event produced comparable groundwater pesticide concentrations, although the HydraSleeve samplers did not yield low turbidity samples. Chlordane and dieldrin impacts in groundwater were detected in this event.

Stream and Sediment Sampling

In DENR's 2006 and 2009 letters, they requested collection of three surface water samples and four sediment samples from Peters Creek which runs adjacent to the western portion of the Wilson Pest Control property. These samples were taken during the 2007 and 2009 monitoring events. No chlorinated pesticides were detected in the samples collected from Peters Creek. Based on a review of the receptor survey in the Comprehensive Site Assessment dated February 5, 2002 by the former consultant Engineering Tectonics, PA, Peters Creek is the only receptor of concern in the area.

1.3 Request for Additional Monitoring

In a letter dated September 12, 2011, DENR's Division of Waste Management (DWM) of the Winston- Salem Regional Office (WSRO) requested another groundwater, surface water and sediment sampling event for the subject site. H&H contacted Mr. Collin Day with the WSRO to inform him that sampling would be taking place on October 10 and 11, 2011. Mr. Collin Day indicated that he would not be able to meet H&H during field activities due to a schedule conflict; however, he stated that H&H should proceed with the sampling in his absence.

Similar to the 2009 event, H&H sampled the monitoring wells MW-1 through MW-7 using a HydraSleeve no purge sampler so as not to generate purge water drums. A larger HydraSleeve sampler was used in this sampling event to lower the turbidity compared with the 2009 event. H&H previously confirmed with Mr. Collin Day of DENR that the HydraSleeve sampling technique was acceptable.

2.0 Ground Water/Surface Water Monitoring

This monitoring report summarizes the field activities performed and the data acquired from the monitoring event in October 2011. Monitoring included collection of water level data, ground water samples from seven on-site monitoring wells, and surface water and sediment samples from Peters Creek.

2.1 Ground Water Levels and Flow Direction

Water levels in site monitoring wells were gauged using an electronic water level meter on October 10, 2011 (Table 1). The depth to ground water ranged from approximately 26 ft below grade in the upgradient well to approximately 14 ft below grade in the source area and downgradient areas of the subject property. The estimated shallow potentiometric map constructed from October 2011 ground water elevation data is presented on Figure 3. Consistent with previous data, the ground water flow direction in the shallow aquifer is generally to the west toward Peters Creek.

2.2 Ground Water Sampling

After water levels were gauged, large diameter HydraSleeve no-purge samplers were placed in each well on October 10, 2011 and allowed to stay approximately 24 hours for turbidity to settle. On October 11, 2011, H&H returned to the site to retrieve the HydraSleeve samplers and obtain pH, conductivity, and temperature readings in-situ, after retrieval of the groundwater samples. All of the samples were visually clear. Final turbidity readings were taken from a small portion of sample water remaining in HydraSleeve sampler.

The US EPA recommends turbidity readings to be 10 NTUs or less. Samples from MW-6, the deep well, and MW-4 read 4.15 and 7.24 NTUs, respectively, while the others ranged from 15.25 to 32.93 NTUs. These turbidity levels are lower than those measured in the 2009 sampling event, and H&H recommends that the larger HydraSleeve samplers be used for any future groundwater monitoring events. Although some of the measured turbidity levels are slightly

higher than the recommended level, the levels were all relatively low; the samples were visually clear; and the potential for significant affect on chlorinated pesticide concentrations is considered to be low.

Ground water samples were collected from shallow monitoring wells MW-1 through MW-5 and MW-7. Deeper monitoring well MW-6 was also sampled. The ground water samples were analyzed for chlorinated pesticides by EPA Method 8081A.

Laboratory analyses were conducted by TestAmerica, a North Carolina-certified laboratory. Dedicated laboratory-supplied sample bottles were used for sample collection. A chain-of-custody record was completed for samples collected and included sample description, date collected, time collected, matrix, sample container information, and analyses required. The chain-of-custody was signed by H&H and placed along with the samples in a chilled cooler for hand delivery to the laboratory by H&H. Copies of the laboratory analytical data sheets and chain-of-custody record are provided in Appendix A.

Chlorinated pesticides were detected above North Carolina ground water standards, as defined in 15A NCAC 2L regulations, in only two of the seven monitoring wells (Table 2). Dieldrin was detected in MW-4 (0.95 μ g/l) and MW-7 (9.2 μ g/l) exceeding its standard of 0.002 μ g/l. A dieldrin isoconcentration map is included as Figure 4. No other chlorinated pesticide detections exceeded ground water standards. The ground water plume is located within the boundaries of the subject property.

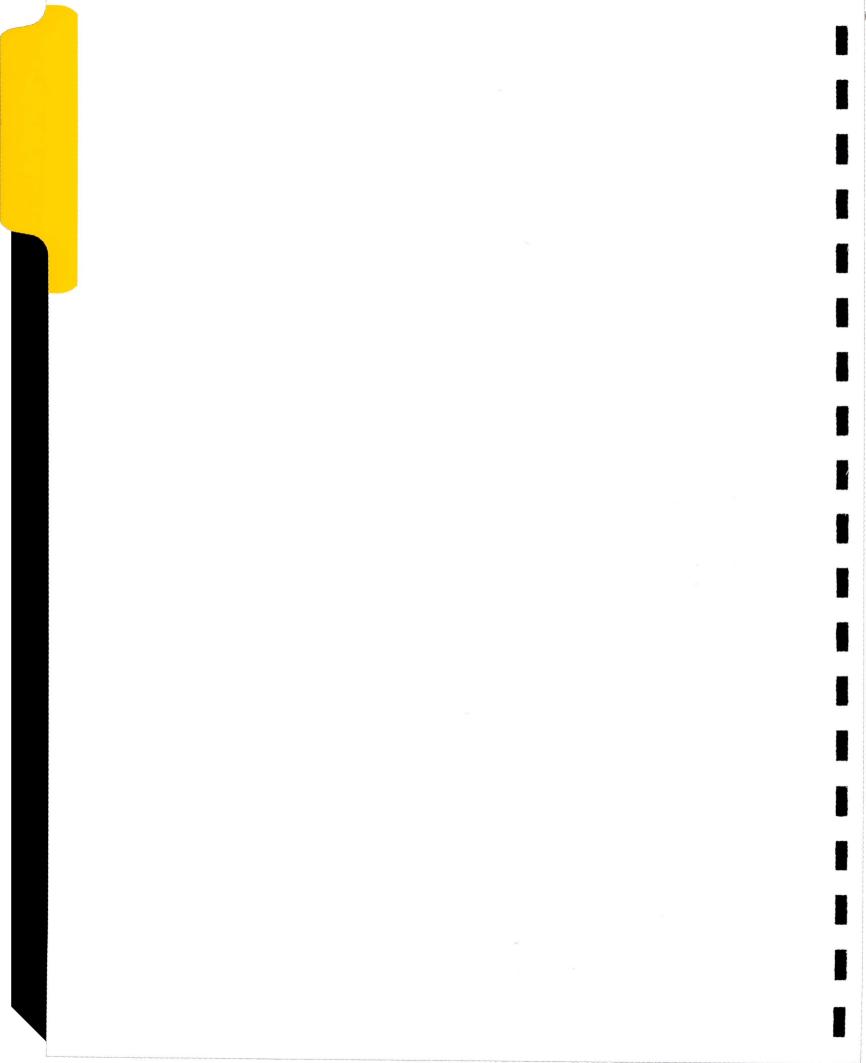
As noted in Table 2, ground water dieldrin concentrations detected in October 2011 are similar to historical concentrations at the site. These data indicate that the plume is stable. In October 2011, Dieldrin concentrations in MW-4 and MW-7 were slightly higher, while chlorinated pesticides that were historically detected in MW-3 were not detected during this event.

Total chlordane, which has historically been detected in several monitoring wells, was not detected during the October 2011 sampling event. H&H believes this may be due, in part, to

higher reporting limits of total chlordane for select monitoring wells. H&H contacted Mr. Ken Hayes with TestAmerica who indicated that the high total chlordane reporting limits were due to matrix interference and could not be reduced. However, based on non-detection at low reporting limits for two chlordane isomers (alpha-chlordane and gamma-chlordane), it is unlikely that total chlordane is present above these low isomer detection limits. A letter of explanation provided by the laboratory is included in Appendix B.

2.3 Surface Water and Sediment Sampling

H&H collected stream surface water and sediment samples from Peters Creek on October 10, 2011. This sampling took place more than 48 hours after the last rain event. At DENR's request, H&H collected three surface water samples and four sediment samples. The surface water and sediment samples were collected upgradient, adjacent to, and downgradient of the former Wilson Pest Control site (Figure 2). The fourth sediment sample was collected further downgradient of the site at a location near the upgradient end of Hanes Park (Figure 1). H&H collected surface water samples by placing the laboratory vials into the center of the stream surface at an angle with care taken to obtain relatively clear samples. H&H collected the sediment samples from adjacent to the stream channel at approximately 0.5 ft below the surface using a decontaminated stainless steel trowel.


Surface water and sediment samples were analyzed for chlorinated pesticides by EPA Method 8081A. No pesticides were detected in the stream or sediment samples (Table 3 and Appendix B). Based on these data, Peters Creek has not been impacted by the former Wilson Pest Control site.

3.0 Summary

As requested by DENR, H&H collected ground water samples, surface water samples, and sediment samples in October 2011 at the former Wilson Pest Control site in Winston-Salem, NC. The chlorinated pesticide dieldrin was detected (up to 9.2 μ g/l) in groundwater samples from two monitoring wells above its North Carolina ground water standard (0.002 μ g/l). Chlorinated pesticides were not detected in the remaining five monitoring wells, including a deeper monitoring well, sampled as part of this monitoring event. The ground water plume is located within the boundaries of the subject property.

Ground water samples were collected using larger diameter HydraSleeve samplers in October 2011 so that hazardous investigation derived purge water would not be generated. Turbidities were slightly higher in the October 2011 samples compared to historical turbidities obtained using low flow purging techniques. Although some of the measured turbidity levels are slightly higher than the recommended level, the levels were all relatively low; the samples were visually clear; and the potential for significant affect on chlorinated pesticide concentrations is considered to be low.

H&H collected stream surface water and sediment samples from Peters Creek. At DENR's request, H&H collected three surface water samples and four sediment samples. The surface water and sediment samples were collected upgradient, adjacent to, and downgradient of the former Wilson Pest Control site. The fourth sediment sample was collected further downgradient of the site at a location near the upgradient end of Hanes Park. No chlorinated pesticides were detected in the stream or sediment samples. Based on these data and previously collected data, Peters Creek has not been impacted by the former Wilson Pest Control site.

Table 1 Monitoring Well Construction and Water Level Data Summary Wilson Pest Control Winston-Salem, North Carolina H&H Job No. BDP-005

					February	16, 2007	July 13	3, 2009	October	10, 2011
		Well TOC	Well	Screen	TOC Water	Water Table	TOC Water	Water Table	TOC Water	Water Table
Monitoring	Installation	Elevation	Depth	Length	Table Depth	Elevation	Table Depth	Elevation	Table Depth	Elevation
Well ID	Date	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
MW-1	12/7/2001	810.96	34	10	26.28	784.68	26.43	784.53	26.85	784.11
MW-2	12/7/2001	799.47	25	10	18.75	780.72	18.79	780.68	18.87	780.60
MW-3	12/7/2001	799.28	25	10	15.49	783.79	15.58	783.70	15.91	783.37
MW-4	12/7/2001	794.77	21	10	15.05	779.72	15.14	779.63	15.15	779.62
MW-5	12/7/2001	793.14	19	10	13.39	779.75	13.65	779.49	13.64	779.50
MW-6	1/1/2002	799.41	43	5	16.40	783.01	16.17	783.24	16.52	782.89
MW-7	1/30/2006	793.83	20	10	13.71	780.12	13.80	780.03	13.86	779.97

Notes:

MW-6 is a Type III monitoring well drilled into bedrock TOC = Top of well casing

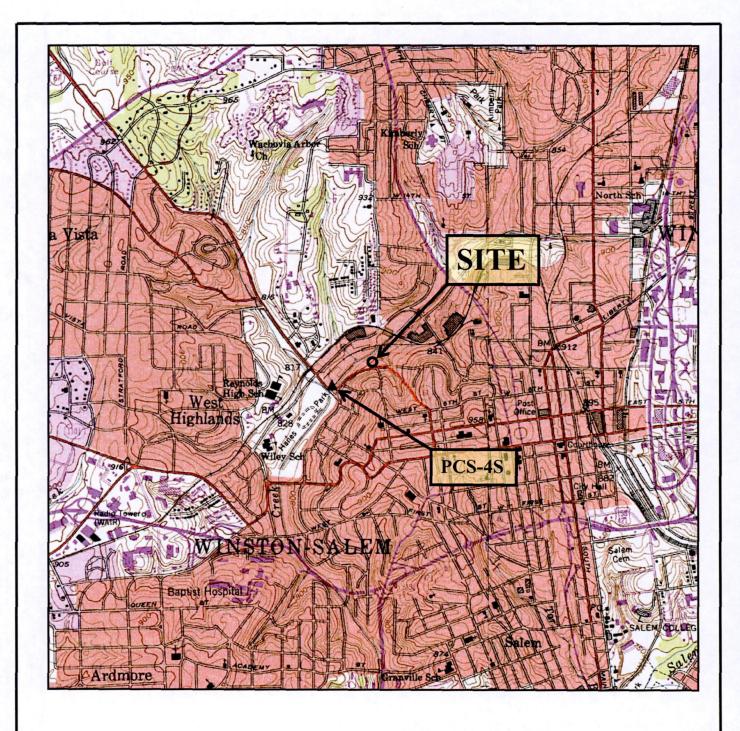
File: Tables, WT Data Date: 11/14/2011

Table 2 Ground Water Analytical Detections Wilson Pest Control Winston-Salem, North Carolina H&H Job No. BDP-005

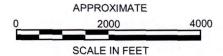
Sample ID		MW-1	 i		MW-2		-	MV	V-3			M\	N-4			MW-5			MW-6			M\	N-7		2L
Date Collected	2/21/07	7/23/09	10/11/11	2/16/07	7/23/09	10/11/11	9/15/06	2/16/07	7/23/09	10/11/11	9/15/06	2/16/07	7/23/09	10/11/11	2/16/07	7/23/09	10/11/11	2/16/07	7/23/09	10/11/11	9/15/06	2/16/07	7/23/09	10/11/11	Standard
Field Turbidity (NTUs)	**	1100	32.93	3.21	38.19	31.54	12.06	3.31	880.9	26.18	2.65	2.16	33.5	7.24	2.23	122.7	15.25	1.36	3.78	4.15	9.45	5.73	194.3	17.13	Not Applicable
OCPs (8081A) alpha-Chlordane gamma-Chlordane Chlordane, Total Dieldrin Endrin ketone Endrin, Total	<0.05 <0.05 <0.05 <0.1 <0.1 <0.1 <0.2	<0.05 <0.05 <0.5 <0.05 <0.05	<0.05 <0.05 <3 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.1 <0.1	<0.05 <0.05 <0.5 <0.05 <0.05 <0.05 <0.1	<0.05 <0.05 <3 <0.05 <0.05 <0.05 <0.05	0.087 0.121 1.13 <0.1 <0.1 <0.1 <0.2	0.0940 0.126 1.16 <0.1 <0.1 <0.1 <0.2	0.22 0.25 1.60 0.22 <0.05 <0.05	<0.0909 <0.0909 <5.45 <0.0909 <0.0909 <0.0909 <0.1818	<0.05 <0.05 <0.05 <0.1 1.47 <0.1	<0.05 <0.05 <0.05 <0.1 <0.1 <0.1 <0.2	<0.05 <0.05 <0.5 0.27 <0.05 0.14 0.14	<0.25 <0.25 <15 0.95 <0.25 <0.25	<0.05 <0.05 <0.05 <0.1 <0.1 <0.1 <0.2	<0.05 <0.05 <0.5 <0.05 <0.05 <0.05 <0.1	<0.0505 <0.0505 <3.03 <0.0505 <0.0505 <0.0505 <0.11	<0.05 <0.05 <0.05 <0.1 <0.1 NS <0.1	<0.05 <0.05 <0.5 <0.05 <0.05 <0.05 <0.01	<0.05 <0.05 <3 <0.05 <0.05 <0.05 <0.05	0.446 0.453 5.25 8.34 0.79 <0.1 0.79	0.494 0.547 5.02 6.97 1.32 <0.1 1.32	<0.05 <0.05 <0.5 6.7 1.5 0.14 1.64	<1 <1 <60 9.2 <1 <1 <2	NS NS 0.1 0.002 NS NS

File: Tables,GW Summary Date:11/14/2011

Notes:
All units are µg/l; The number in parenthesis is the EPA Analytical Method
GW = Ground Water; OCPs = Organochlorine Pesticides; NS = Not Specified
Bold indicates exceeds ground water standard
**Turbidity meter malfunctioned, sample was field filtered using 0.45 micron filter because peristaltic pump could not be used for purging.
Samples were taken on 7/23/09 and 10/11/11 with Hydrasleeve no purge samplers


Table 3 Peter's Creek Surface Water and Sediment Data Summary Wilson Pest Control Winston-Salem, North Carolina H&H Job No. BDP-005

		Surface Water (µg/l)											
		PCS-1W			PCS-3W								
Date Collected	2/16/07	7/23/09	10/10/11	2/16/07	7/23/09	10/10/11	2/16/07	7/23/09	10/10/11				
Field Turbidity (NTUs)	3.25	NA	1.25	3.52	NA	1.00	10.53	NA	1.45				
OCPs (8081A)	ND	ND	ND	ND	ND	ND	ND	ND	ДИ				

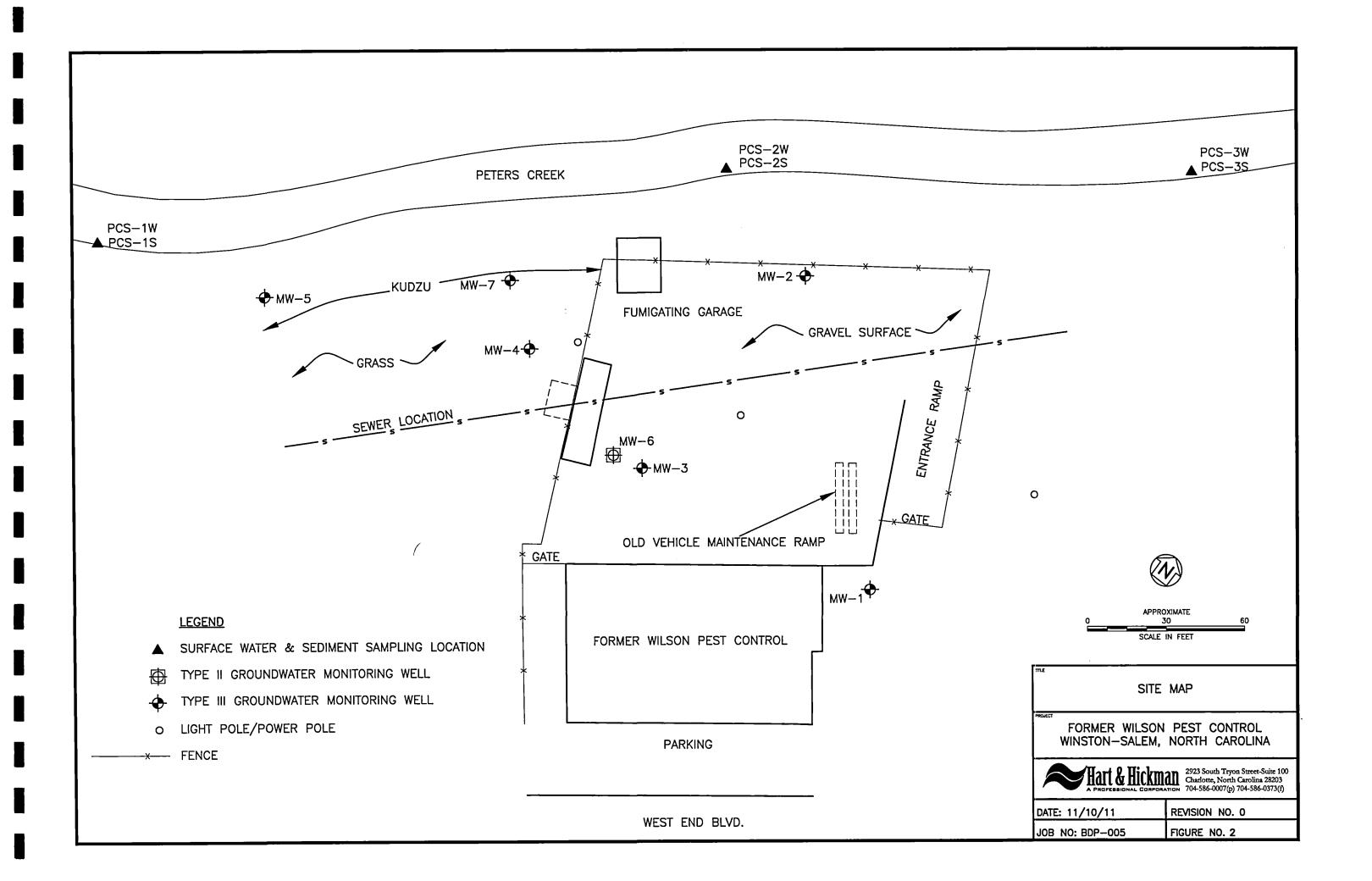

						Sedimen	(µg/kg)					
		PCS-1S			PCS-2S			PCS-3S			PCS-4S	
Date Collected	2/16/07	7/23/09	10/10/11	2/16/07	7/23/09	10/10/11	2/16/07	7/23/09	10/10/11	2/16/07	7/23/09	10/10/11
OCPs (8081A)	ND	ND	ND									

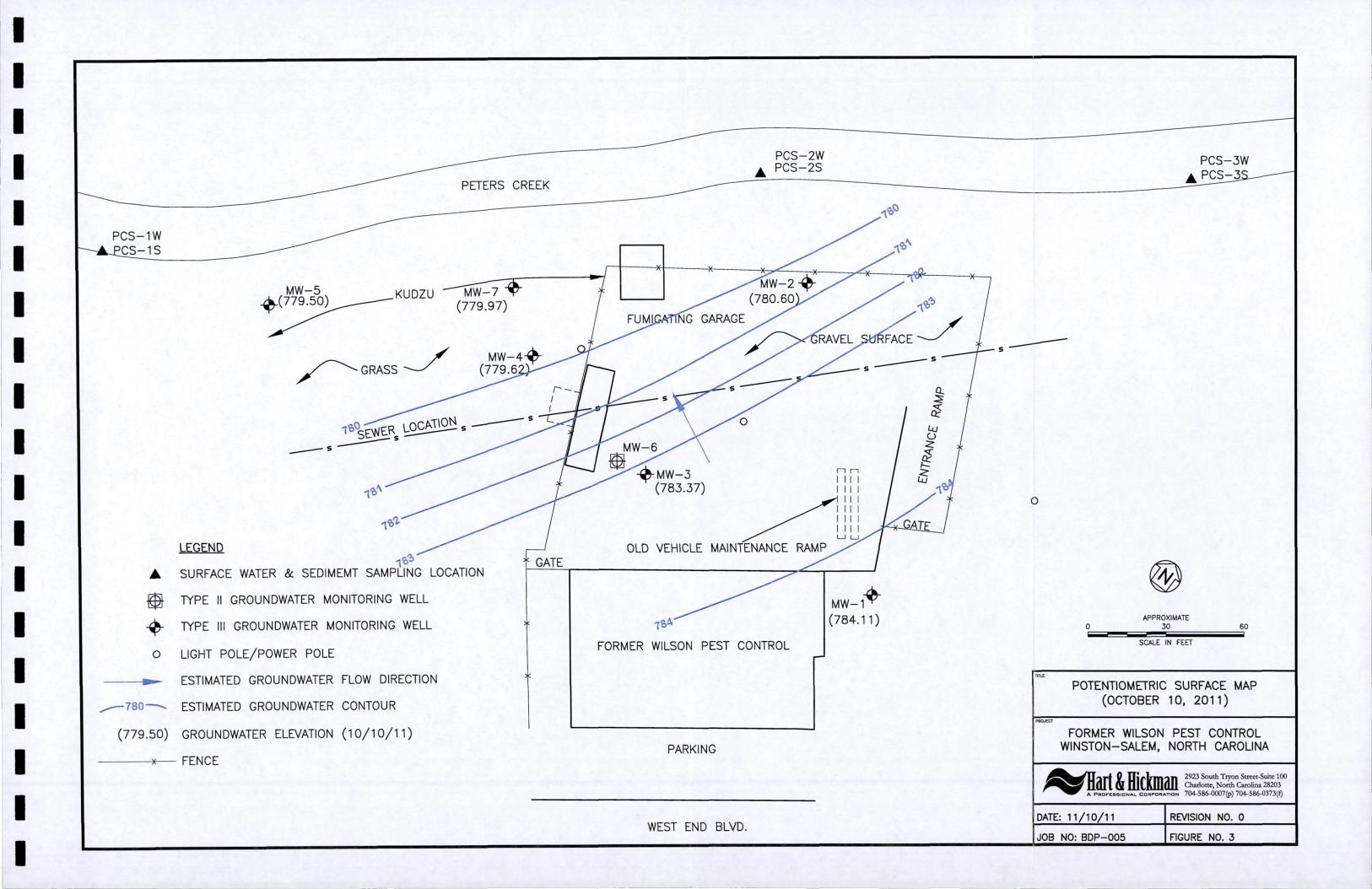
Notes:

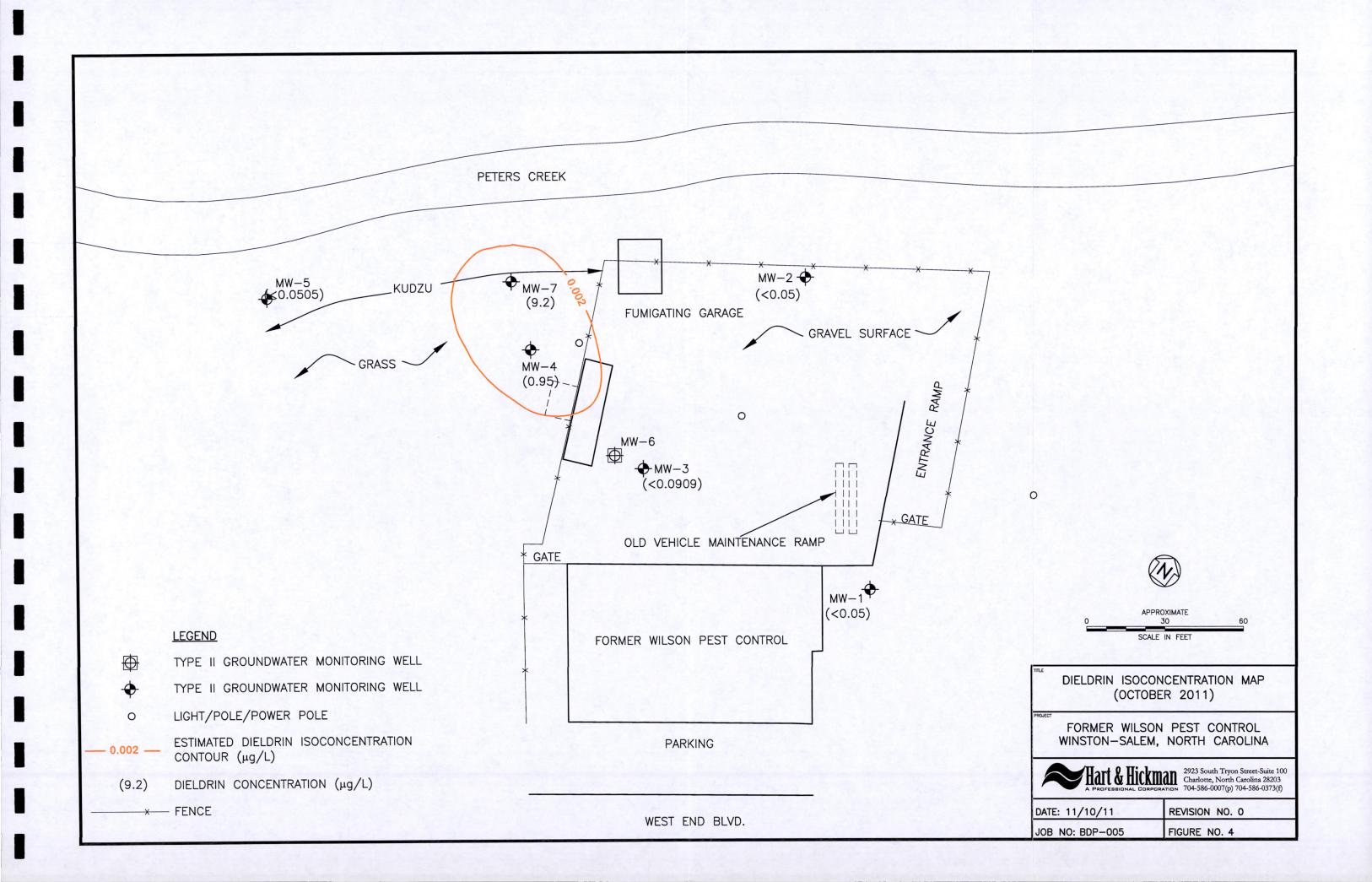
The number in parenthesis is the EPA Analytical Method
GW = Ground Water; OCPs = Organochlorine Pesticides; NS = Not Specified
ND = No OCPs detected; NA = Not Analyzed

U.S.G.S. QUADRANGLE MAP

WINSTON SALEM WEST N.C. 1950 PHOTOREVISED 1994 WINSTON SALEM EAST N.C. 1950 **PHOTOREVISED 1994**


QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC) TITLE


SITE LOCATION MAP


FORMER WILSON PEST CONTROL SITE WINSTON-SALEM, NORTH CAROLINA

DATE:	11/10/11	REVISION NO:	0	
JOB NO:	BDP-005	FIGURE NO:	1	

Appendix A

Laboratory Analytical Data

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NUJ1766

Client Project/Site: BDP-005

Client Project Description: Former Wilson Pest

For:

- LINKS -----

Review your project results through

Have a Question?

www.testamericainc.com

Visit us at:

Expert

Hart & Hickman (2162) 2923 South Tryon Street, Suite 100 Charlotte, NC 28203-5449

Attn: Matt Bramblett

Authorized for release by: 10/20/2011 02:58:50 PM

Ken A. Hayes Senior Project Manager

ken.hayes@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cover Page	1
Table of Contents	
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	15
QC Association	20
Chronicle	22
Method Summary	25
Certification Summary	26
Chain of Custody	27

Sample Summary

Client: Hart & Hickman (2162) Project/Site: BDP-005

MW-2

MW-4

MW-7

MW-5

NUJ1766-11

NUJ1766-12

NUJ1766-13

NUJ1766-14

TestAmerica Job ID: NUJ1766

10/11/11 12:55 10/13/11 07:40

10/11/11 13:25 10/13/11 07:40

10/11/11 13:45 10/13/11 07:40

10/11/11 14:00

10/13/11 07:40

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
NUJ1766-01	PCS-1W	Water	10/10/11 14:55	10/13/11 07:40
NUJ1766-02	PCS-1S	Soil	10/10/11 15:00	10/13/11 07:40
NUJ1766-03	PCS-2W	Water	10/10/11 15:20	10/13/11 07:40
NUJ1766-04	PCS-2S	Soil	10/10/11 15:25	10/13/11 07:40
NUJ1766-05	PCS-3W	Water	10/10/11 15:50	10/13/11 07:40
NUJ1766-06	PCS-3S	Soil	10/10/11 15:55	10/13/11 07:40
NUJ1766-07	PCS-4S	Soil	10/10/11 16:15	10/13/11 07:40
NUJ1766-08	MW-1	Water	10/11/11 12:10	10/13/11 07:40
NUJ1766-09	MW-3	Water	10/11/11 12:20	10/13/11 07:40
NUJ1766-10	MW-6	Water	10/11/11 12:35	10/13/11 07:40

Water

Water

Water

Water

3

<u>4</u> 5

7

8

٠ ۸ ۸

W.

Definitions/Glossary

Client: Hart & Hickman (2162) Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Qualifiers

Pesticides

Qualifier	Qualifier Description
MNR1	There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike.
E	Concentration exceeds the calibration range and therefore result is semi-quantitative.
MNR	No results were reported for the MS/MSD. The sample used for the MS/MSD required dilution due to the sample matrix. Because of this, the spike compounds were diluted below the detection limit.
RL1	Reporting limit raised due to sample matrix effects.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
ΓEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Hart & Hickman (2162) Project/Site: BDP-005

Client Sample ID: PCS-1W

Date Collected: 10/10/11 14:55 Date Received: 10/13/11 07:40 Lab Sample ID: NUJ1766-01

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
delta-BHC	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
alpha-BHC	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
beta-BHC	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
gamma-BHC (Lindane)	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
alpha-Chlordane	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
gamma-Chlordane	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Chlordane	ND		3.06		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
4,4'-DDD	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
4,4'-DDE	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
4,4'-DDT	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Dieldrin	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Endosulfan I	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Endosulfan II	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Endosulfan sulfate	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Endrin	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Endrin aldehyde	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Endrin ketone	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Heptachlor	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Heptachlor epoxide	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Methoxychlor	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Toxaphene	ND		2.04		ug/L		10/13/11 15:44	10/14/11 14:52	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	91		38 - 150				10/13/11 15:44	10/14/11 14:52	1.00
Decachlorobiphenyl	64		10 - 141				10/13/11 15:44	10/14/11 14:52	1.00

Client Sample ID: PCS-1S

Date Collected: 10/10/11 15:00

Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-02

Matrix: Soil

Percent Solids: 85.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	RL1	0.0198		mg/kg dry	菜	10/15/11 08:19	10/19/11 05:41	10.0
delta-BHC	ND	RL1	0.0198		mg/kg dry	**	10/15/11 08:19	10/19/11 05:41	10.0
alpha-BHC	ND	RL1	0.0198		mg/kg dry	₩	10/15/11 08:19	10/19/11 05:41	10.0
beta-BHC	ND	RL1	0.0385		mg/kg dry	**	10/15/11 08:19	10/19/11 05:41	10.0
gamma-BHC (Lindane)	ND	RL1	0.0198		mg/kg dry	章	10/15/11 08:19	10/19/11 05:41	10.0
alpha-Chlordane	ND	RL1	0.0198		mg/kg dry	Ħ	10/15/11 08:19	10/19/11 05:41	10.0
gamma-Chlordane	ND	RL1	0.0198		mg/kg dry	*	10/15/11 08:19	10/19/11 05:41	10.0
Chlordane	ND	RL1	0.778		mg/kg dry	**	10/15/11 08:19	10/19/11 05:41	10.0
4,4'-DDD	ND	RL1	0.0198		mg/kg dry	¤	10/15/11 08:19	10/19/11 05:41	10.0
4,4'-DDE	ND	RL1	0.0198		mg/kg dry	口	10/15/11 08:19	10/19/11 05:41	10.0
4,4'-DDT	ND	RL1	0.0198		mg/kg dry	#	10/15/11 08:19	10/19/11 05:41	10.0
Dieldrin	ND	RL1	0.0198		mg/kg dry	**	10/15/11 08:19	10/19/11 05:41	10.0
Endosulfan I	ND	RL1	0.0198		mg/kg dry	***	10/15/11 08:19	10/19/11 05:41	10.0
Endosulfan II	ND	RL1	0.0198		mg/kg dry	#	10/15/11 08:19	10/19/11 05:41	10.0
Endosulfan sulfate	ND	RL1	0.0198		mg/kg dry	*	10/15/11 08:19	10/19/11 05:41	10.0
Endrin	ND	RL1	0.0198		mg/kg dry	**	10/15/11 08:19	10/19/11 05:41	10.0

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Lab Sample ID: NUJ1766-02

Matrix: Soil

Percent Solids: 85.2

Client Sample ID: PCS-1S

Date Collected: 10/10/11 15:00 Date Received: 10/13/11 07:40

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B - RE1 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin aldehyde	ND	RL1	0.0198		mg/kg dry	¤	10/15/11 08:19	10/19/11 05:41	10.0
Endrin ketone	ND	RL1	0.0198		mg/kg dry	亞	10/15/11 08:19	10/19/11 05:41	10.0
Heptachlor	ND	RL1	0.0198		mg/kg dry	Ħ	10/15/11 08:19	10/19/11 05:41	10.0
Heptachlor epoxide	ND	RL1	0.0198		mg/kg dry	兹	10/15/11 08:19	10/19/11 05:41	10.0
Methoxychlor	ND	RL1	0.0385		mg/kg dry	¤	10/15/11 08:19	10/19/11 05:41	10.0
Toxaphene	ND	RL1	0.778		mg/kg dry	算	10/15/11 08:19	10/19/11 05:41	10.0

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	100	21 - 145	10/15/11 08:19	10/19/11 05:41	10.0
Decachlorobiphenyl	100	25 - 150	10/15/11 08:19	10/19/11 05:41	10.0

Method: SW-846 - General Chemistry Parameters

Analyte	Resu	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
% Dry Solids	85.	2	0.500		%	_	10/17/11 17:00	10/18/11 13:53	1.00	

Client Sample ID: PCS-2W

Date Collected: 10/10/11 15:20

Date Received: 10/13/11 07:40

Decachlorobiphenyl

Lab Sample ID: NUJ1766-03

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
delta-BHC	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
alpha-BHC	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
beta-BHC	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
gamma-BHC (Lindane)	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
alpha-Chlordane	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
gamma-Chlordane	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Chlordane	ND		3.06		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
4,4'-DDD	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
4,4'-DDE	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
4,4'-DDT	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Dieldrin	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Endosulfan I	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Endosulfan II	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Endosulfan sulfate	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Endrin	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Endrin aldehyde	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Endrin ketone	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Heptachlor	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Heptachlor epoxide	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Methoxychlor	ND		0.0510		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Toxaphene	ND		2.04		ug/L		10/13/11 15:44	10/14/11 15:07	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-meta-xylene	95		38 - 150				10/13/11 15:44	10/14/11 15:07	1.00

1.00

10/14/11 15:07

10/13/11 15:44

10 - 141

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Lab Sample ID: NUJ1766-04

Matrix: Soil

5

Percent Solids: 81.3

Client Sample ID: PCS-2S

Date Collected: 10/10/11 15:25 Date Received: 10/13/11 07:40

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B - RE1 Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac T Aldrin ND RL1 0.0208 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 delta-BHC ND RL1 0.0208 * 10/15/11 08:19 mg/kg dry 10/19/11 05:55 10.0 alpha-BHC ND RL1 0.0208 10/15/11 08:19 mg/kg dry 10/19/11 05:55 10.0 beta-BHC ND RL1 0.0405 n mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 gamma-BHC (Lindane) ND RL1 0.0208 mg/kg dry 改 10/15/11 08:19 10/19/11 05:55 10.0 alpha-Chlordane ND RL 1 0.0208 10/15/11 08:19 10/19/11 05:55 10.0 mg/kg dry gamma-Chlordane ND RI 1 0.0208 故 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Chlordane RL1 ND 0.818 10/15/11 08:19 10/19/11 05:55 10.0 mg/kg dry 4.4'-DDD ND RL1 0.0208 10/15/11 08:19 mg/kg dry 10/19/11 05:55 10.0 4,4'-DDE ND RL1 0.0208 10/15/11 08:19 mg/kg dry 10/19/11 05:55 10.0 4,4'-DDT ND RL1 0.0208 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Dieldrin ND RL1 0.0208 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Endosulfan I ND RL1 0.0208 10/15/11 08:19 10/19/11 05:55 mg/kg dry 10.0 Endosulfan II ND RI 1 0.0208 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Endosulfan sulfate ND RL1 0.0208 10/15/11 08:19 mg/kg dry 10/19/11 05:55 10.0 Endrin ND RL1 0.0208 10/15/11 08:19 mg/kg dry 10/19/11 05:55 10.0 Endrin aldehyde ND RL1 0.0208 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Endrin ketone ND RL1 0.0208 mg/kg dry 世 10/15/11 08:19 10/19/11 05:55 10.0 Heptachlor ND RL1 0.0208 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Heptachlor epoxide ND RL1 0.0208 Ħ mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Methoxychlor ND RI 1 0.0405 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Toxaphene ND RL1 0.818 mg/kg dry 10/15/11 08:19 10/19/11 05:55 10.0 Surrogate % Recovery Qualifier Limits Dil Fac Prepared Analyzed Tetrachloro-meta-xylene 100 21 - 145 10/15/11 08:19 10/19/11 05:55 10.0 Decachlorobiphenyl 100 25 - 150 10/15/11 08:19 10/19/11 05:55 10.0 Method: SW-846 - General Chemistry Parameters Analyte RL MDL Result Qualifier Unit Prepared Dil Fac

Client Sample ID: PCS-3W

% Dry Solids

Date Collected: 10/10/11 15:50 Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-05

10/17/11 17:00

Analyzed

10/18/11 13:53

Matrix: Water

1.00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
delta-BHC	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
alpha-BHC	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
beta-BHC	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
gamma-BHC (Lindane)	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
alpha-Chlordane	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
gamma-Chlordane	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Chlordane	ND	3.03	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
4,4'-DDD	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
4,4'-DDE	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
4,4'-DDT	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Dieldrin	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Endosulfan I	ND	0.0505	ug/L		10/13/11 15:44	10/14/11 15:21	1.00

0.500

81.3

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Client Sample ID: PCS-3W

Date Collected: 10/10/11 15:50 Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-05

Matrix: Water

Method: SW846 8081B - Organochlorine Pesticides by	EPA Method 8081B	(Continued)
--	------------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan II	ND		0.0505		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Endosulfan sulfate	ND		0.0505		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Endrin	ND		0.0505		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Endrin aldehyde	ND		0.0505		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Endrin ketone	ND		0.0505		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Heptachlor	ND		0.0505		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Heptachlor epoxide	ND		0.0505		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Methoxychlor	ND		0.0505		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Toxaphene	ND		2.02		ug/L		10/13/11 15:44	10/14/11 15:21	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	103	***************************************	38 - 150				10/13/11 15:44	10/14/11 15:21	1.00

10 - 141

Client Sample ID: PCS-3S

Decachlorobiphenyl

Date Collected: 10/10/11 15:55 Date Received: 10/13/11 07:40

Method: SW-846 - General Chemistry Parameters

Analyte

% Dry Solids

Lab Sample ID: NUJ1766-06

10/14/11 15:21

10/13/11 15:44

Matrix: Soil

1.00

Percent Solids: 79

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B - RE1

68

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	RL1	0.0212		mg/kg dry	#	10/15/11 08:19	10/19/11 06:10	10.0
delta-BHC	ND	RL1	0.0212		mg/kg dry	禁	10/15/11 08:19	10/19/11 06:10	10.0
alpha-BHC	ND	RL1	0.0212		mg/kg dry	#	10/15/11 08:19	10/19/11 06:10	10.0
beta-BHC	ND	RL1	0.0411		mg/kg dry	**	10/15/11 08:19	10/19/11 06:10	10.0
gamma-BHC (Lindane)	ND	RL1	0.0212		mg/kg dry	章	10/15/11 08:19	10/19/11 06:10	10.0
alpha-Chlordane	ND	RL1	0.0212		mg/kg dry	#	10/15/11 08:19	10/19/11 06:10	10.0
gamma-Chlordane	ND	RL1	0.0212		mg/kg dry	#	10/15/11 08:19	10/19/11 06:10	10.0
Chlordane	ND	RL1	0.831		mg/kg dry	**	10/15/11 08:19	10/19/11 06:10	10.0
4,4'-DDD	ND	RL1	0.0212		mg/kg dry	兹	10/15/11 08:19	10/19/11 06:10	10.0
4,4'-DDE	ND	RL1	0.0212		mg/kg dry	Ħ	10/15/11 08:19	10/19/11 06:10	10.0
4,4'-DDT	ND	RL1	0.0212		mg/kg dry	⇔	10/15/11 08:19	10/19/11 06:10	10.0
Dieldrin	ND	RL1	0.0212		mg/kg dry	笠	10/15/11 08:19	10/19/11 06:10	10.0
Endosulfan I	ND	RL1	0.0212		mg/kg dry	#	10/15/11 08:19	10/19/11 06:10	10.0
Endosulfan II	ND	RL1	0.0212		mg/kg dry	章	10/15/11 08:19	10/19/11 06:10	10.0
Endosulfan sulfate	ND	RL1	0.0212		mg/kg dry	#	10/15/11 08:19	10/19/11 06:10	10.0
Endrin	ND	RL1	0.0212		mg/kg dry	**	10/15/11 08:19	10/19/11 06:10	10.0
Endrin aldehyde	ND	RL1	0.0212		mg/kg dry	Ħ	10/15/11 08:19	10/19/11 06:10	10.0
Endrin ketone	ND	RL1	0.0212		mg/kg dry	故	10/15/11 08:19	10/19/11 06:10	10.0
Heptachlor	ND	RL1	0.0212		mg/kg dry	森	10/15/11 08:19	10/19/11 06:10	10.0
Heptachlor epoxide	ND	RL1	0.0212		mg/kg dry	Ħ	10/15/11 08:19	10/19/11 06:10	10.0
Methoxychlor	ND	RL1	0.0411		mg/kg dry	**	10/15/11 08:19	10/19/11 06:10	10.0
Toxaphene	ND	RL1	0.831		mg/kg dry	×	10/15/11 08:19	10/19/11 06:10	10.0
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-meta-xylene	100		21 - 145				10/15/11 08:19	10/19/11 06:10	10.0
Decachlorobiphenyl	120		25 - 150				10/15/11 08:19	10/19/11 06:10	10.0

Analyzed 10/17/11 17:00 10/18/11 13:53

Dil Fac

Prepared

RL

0.500

Result Qualifier

79.0

MDL Unit

RL

MDL Unit

mg/kg dry

mg/kg dry

mg/kg dry

Client: Hart & Hickman (2162) Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Client Sample ID: PCS-4S

Lab Sample ID: NUJ1766-07

10/19/11 06:24

10/19/11 06:24

10/19/11 06:24

10/19/11 06:24

10/19/11 06:24

10/19/11 06:24

10/19/11 06:24

10/19/11 06:24

Prepared

10/15/11 08:19

10/15/11 08:19

10/15/11 08:19

Date Collected: 10/10/11 16:15 Date Received: 10/13/11 07:40

Analyte

Matrix: Soil Percent Solids: 80.9

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B - RE1

Analyzed Dil Fac 10/19/11 06:24 10.0 10/19/11 06:24 10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Aldrin ND RL1 0.0207 10/15/11 08:19 mg/kg dry delta-BHC RL1 0.0207 mg/kg dry ND 10/15/11 08:19 alpha-BHC RL1 ND 0.0207 10/15/11 08:19 mg/kg dry beta-BHC RL1 Ħ ND 0.0402 mg/kg dry 10/15/11 08:19 gamma-BHC (Lindane) RL1 ND 0.0207 mg/kg dry 10/15/11 08:19 alpha-Chlordane RL1 ND 0.0207 mg/kg dry 10/15/11 08:19 gamma-Chlordane ND RL1 0.0207 mg/kg dry 10/15/11 08:19 Chlordane RL1 ND 10/15/11 08:19

Result Qualifier

5

0.813 mg/kg dry 4.4'-DDD ND RL1 0.0207 mg/kg dry 4.4'-DDE ND RI 1 0.0207 mg/kg dry 4,4'-DDT ND RL1 0.0207 mg/kg dry ND RL1 0.0207 mg/kg dry RL1 0.0207 ND mg/kg dry

> ND RL1

> ND RL1

ND RL1

10/15/11 08:19 10/19/11 06:24 Dieldrin 10/15/11 08:19 10/19/11 06:24 Endosulfan I 10/15/11 08:19 10/19/11 06:24 Endosulfan II ND RL1 0.0207 mg/kg dry 10/15/11 08:19 10/19/11 06:24 Endosulfan sulfate RL1 ND 0.0207 mg/kg dry 10/15/11 08:19 10/19/11 06:24 RL1 Endrin ND 0.0207 mg/kg dry 10/15/11 08:19 10/19/11 06:24 Endrin aldehyde RL1 Ħ ND 0.0207 mg/kg dry 10/15/11 08:19 10/19/11 06:24 Endrin ketone ND RL1 0.0207 禁 mg/kg dry 10/15/11 08:19 10/19/11 06:24 Heptachlor ND RL1 0.0207 mg/kg dry 10/15/11 08:19 10/19/11 06:24

0.0207

0.0402

0.813

10/15/11 08:19 10/19/11 06:24 10.0 10/15/11 08:19 10/19/11 06:24 10.0 Dil Fac

10/19/11 06:24

Surrogate	% Recovery	Qualifier	Limits
Tetrachloro-meta-xylene	100		21 - 145
Decachlorobiphenyl	100		25 - 150

Prepared Analyzed 10/15/11 08:19 10/19/11 06:24 10.0 10/15/11 08:19 10/19/11 06:24 10.0

Method: SW-846 - General Chemistry Parameters

Analyte RL MDL Result Qualifier Unit Prepared Analyzed Dil Fac % Dry Solids 0.500 80.9 10/17/11 17:00 10/18/11 13:53 1.00

Client Sample ID: MW-1

Heptachlor epoxide

Methoxychlor

Toxaphene

Lab Sample ID: NUJ1766-08

Date Collected: 10/11/11 12:10 Date Received: 10/13/11 07:40

Matrix: Water

Mothod: SW846 9091R - Organochlorine Posticides by EPA Method 8081R

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
delta-BHC	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
alpha-BHC	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
beta-BHC	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
gamma-BHC (Lindane)	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
alpha-Chlordane	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
gamma-Chlordane	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
Chlordane	ND	3.00		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
4,4'-DDD	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
4,4'-DDE	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
4,4'-DDT	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
Dieldrin	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00
Endosulfan I	ND	0.0500		ug/L		10/13/11 15:44	10/14/11 15:35	1.00

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Client Sample ID: MW-1

Date Collected: 10/11/11 12:10 Date Received: 10/13/11 07:40 Lab Sample ID: NUJ1766-08

Matrix: Water

Method: SW846 8081B	 Organochlorine Pesticides 	by EPA Method 8081B	(Continued)
A b-t-			

Analyte	Result Qua	lifier RL	MDL Un	nit [D Prepared	Analyzed	Dil Fac
Endosulfan II	ND	0.0500	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Endosulfan sulfate	ND	0.0500	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Endrin	ND	0.0500	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Endrin aldehyde	ND	0.0500	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Endrin ketone	ND	0.0500	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Heptachlor	ND	0.0500	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Heptachlor epoxide	ND	0.0500	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Methoxychlor	ND	0.0500	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Toxaphene	ND	2.00	ug	g/L	10/13/11 15:44	10/14/11 15:35	1.00
Surrogate	% Recovery Qua	lifier Limits			Prepared	Analyzed	Dil Fac

Tetrachloro-meta-xylene 55 38 - 150 10/13/11 15:44 10/14/11 15:35 1.00 Decachlorobiphenyl 23 10 - 141 10/14/11 15:35 10/13/11 15:44 1.00

Client Sample ID: MW-3 Date Collected: 10/11/11 12:20

Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-09

Matrix: Water

Method: SW846 8081B - Organo	chlorine Pesticides by	y EPA Method 8081B - RE1
------------------------------	------------------------	--------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
delta-BHC	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
alpha-BHC	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
beta-BHC	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
gamma-BHC (Lindane)	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
alpha-Chlordane	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
gamma-Chlordane	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Chlordane	ND		5.45		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
4,4'-DDD	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
4,4'-DDE	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
4,4'-DDT	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Dieldrin	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Endosulfan I	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Endosulfan II	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Endosulfan sulfate	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Endrin	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Endrin aldehyde	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Endrin ketone	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Heptachlor	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Heptachlor epoxide	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Methoxychlor	ND		0.0909		ug/L		10/17/11 10:00	10/18/11 22:17	1.00
Toxaphene	ND		3.64		ug/L		10/17/11 10:00	10/18/11 22:17	1.00

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	57		38 - 150	10/17/11 10:00	10/18/11 22:17	1.00
Decachlorobiphenyl	60		10 - 141	10/17/11 10:00	10/18/11 22:17	1.00

Client: Hart & Hickman (2162) Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Client Sample ID: MW-6

Lab Sample ID: NUJ1766-10

Date Collected: 10/11/11 12:35 Date Received: 10/13/11 07:40

Matrix: Water

5

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
delta-BHC	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
alpha-BHC	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
beta-BHC	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
gamma-BHC (Lindane)	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
alpha-Chlordane	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
gamma-Chlordane	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Chlordane	ND		3.00		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
4,4'-DDD	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
4,4'-DDE	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
4,4'-DDT	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Dieldrin	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Endosulfan I	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Endosulfan II	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Endosulfan sulfate	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Endrin	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Endrin aldehyde	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Endrin ketone	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Heptachlor	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Heptachlor epoxide	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Methoxychlor	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Toxaphene	ND		2.00		ug/L		10/17/11 10:00	10/18/11 22:31	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	35	ZX	38 - 150				10/17/11 10:00	10/18/11 22:31	1.00
Decachlorobiphenyl	28		10 - 141				10/17/11 10:00	10/18/11 22:31	1.00

Client Sample ID: MW-2

Date Collected: 10/11/11 12:55 Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-11

Matrix: Water

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B - RE1

Analyte	Result Qualifie	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
delta-BHC	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
alpha-BHC	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
beta-BHC	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
gamma-BHC (Lindane)	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
alpha-Chlordane	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
gamma-Chlordane	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Chlordane	ND	3.00	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
4,4'-DDD	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
4,4'-DDE	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
4,4'-DDT	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Dieldrin	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Endosulfan I	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Endosulfan II	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Endosulfan sulfate	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Endrin	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Endrin aldehyde	ND	0.0500	ug/L		10/17/11 10:00	10/18/11 22:45	1.00

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Client Sample ID: MW-2

Lab Sample ID: NUJ1766-11

Matrix: Water

Date Collected: 10/11/11 12:55 Date Received: 10/13/11 07:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin ketone	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Heptachlor	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Heptachlor epoxide	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Methoxychlor	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Toxaphene	ND		2.00		ug/L		10/17/11 10:00	10/18/11 22:45	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	32	ZX	38 - 150				10/17/11 10:00	10/18/11 22:45	1.00
Decachlorobiphenyl	44		10 - 141				10/17/11 10:00	10/18/11 22:45	1.00

Client Sample ID: MW-4

Date Collected: 10/11/11 13:25 Date Received: 10/13/11 07:40 Lab Sample ID: NUJ1766-12

Matrix: Water

Analyte	Result Q	ualifier	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
delta-BHC	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
alpha-BHC	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
beta-BHC	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
gamma-BHC (Lindane)	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
alpha-Chlordane	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
gamma-Chlordane	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Chlordane	ND	15	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
4,4'-DDD	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
4,4'-DDE	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
4,4'-DDT	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Dieldrin	0.950	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Endosulfan I	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Endosulfan II	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Endosulfan sulfate	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Endrin	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Endrin aldehyde	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Endrin ketone	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Heptachlor	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Heptachlor epoxide	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Methoxychlor	ND	0.25	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Toxaphene	ND	10	0	ug/L		10/13/11 15:44	10/17/11 12:47	5.00
Surrogate	% Recovery Q	ualifier Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	80	38 - 150				10/13/11 15:44	10/17/11 12:47	5.00
Decachlorobiphenyl	50	10 - 141				10/13/11 15:44	10/17/11 12:47	5.00

Client Sample Results

Client: Hart & Hickman (2162) Project/Site: BDP-005 TestAmerica Job ID: NUJ1766

Client Sample ID: MW-7

Lab Sample ID: NUJ1766-13

Date Collected: 10/11/11 13:45 Date Received: 10/13/11 07:40 Matrix: Water

5

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B - RE2

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	1.00	ug/L	******	10/13/11 15:44	10/18/11 20:37	20.0
delta-BHC	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
alpha-BHC	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
beta-BHC	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
gamma-BHC (Lindane)	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
alpha-Chlordane	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
gamma-Chlordane	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Chlordane	ND	60.0	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
4,4'-DDD	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
4,4'-DDE	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
4,4'-DDT	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Dieldrin	9.20	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Endosulfan I	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Endosulfan II	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Endosulfan sulfate	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Endrin	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Endrin aldehyde	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Endrin ketone	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Heptachlor	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Heptachlor epoxide	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Methoxychlor	ND	1.00	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Toxaphene	ND	40.0	ug/L		10/13/11 15:44	10/18/11 20:37	20.0
Surrogate	% Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	80	38 - 150			10/13/11 15:44	10/18/11 20:37	20.0

10 - 141

Client Sample ID: MW-5

Decachlorobiphenyl

Date Collected: 10/11/11 14:00 Date Received: 10/13/11 07:40 Lab Sample ID: NUJ1766-14

10/18/11 20:37

10/13/11 15:44

Matrix: Water

20.0

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B - RF1

40

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	0.0505		ug/L	-	10/17/11 10:00	10/18/11 23:00	1.00
delta-BHC	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
alpha-BHC	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
beta-BHC	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
gamma-BHC (Lindane)	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
alpha-Chlordane	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
gamma-Chlordane	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Chlordane	ND	3.03		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
4,4'-DDD	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
4,4'-DDE	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
4,4'-DDT	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Dieldrin	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Endosulfan I	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Endosulfan II	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Endosulfan sulfate	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Endrin	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Endrin aldehyde	ND	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00

Client Sample Results

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Client Sample ID: MW-5

Date Collected: 10/11/11 14:00 Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-14

Matrix: Water

Method: SW846 8081B - Or	rganochlorine Pestici	des by EPA	Method 8081	B - RE1 (0	Continued)	
Analyte	Result	Qualifier	RL	MDL	Unit	D
Endrin ketone	ND		0.0505		ua/l	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endrin ketone	ND	717	0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Heptachlor	ND		0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Heptachlor epoxide	ND		0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Methoxychlor	ND		0.0505		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Toxaphene	ND		2.02		ug/L		10/17/11 10:00	10/18/11 23:00	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
48	38 - 150	10/17/11 10:00	10/18/11 23:00	1.00
51	10 - 141	10/17/11 10:00	10/18/11 23:00	1.00
	% Recovery Qualifier 48 51	48 38 - 150	48 38 - 150 10/17/11 10:00	48 38 - 150 10/17/11 10:00 10/18/11 23:00

QC Sample Results

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B

Lab Sample ID: 11J3131-BLK1

Matrix: Water

Analysis Batch: U018123

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 11J3131_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
delta-BHC	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
alpha-BHC	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
beta-BHC	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
gamma-BHC (Lindane)	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
alpha-Chlordane	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
gamma-Chlordane	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Chlordane	ND		3.00		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
4,4'-DDD	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
4,4'-DDE	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
4,4'-DDT	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Dieldrin	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Endosulfan I	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Endosulfan II	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Endosulfan sulfate	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Endrin	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Endrin aldehyde	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Endrin ketone	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Heptachlor	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Heptachlor epoxide	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Methoxychlor	ND		0.0500		ug/L		10/14/11 06:50	10/14/11 14:10	1.00
Toxaphene	ND		2.00		ug/L		10/14/11 06:50	10/14/11 14:10	1.00

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	93		38 - 150	10/14/11 06:50	10/14/11 14:10	1.00
Decachlorobiphenyl	66		10 - 141	10/14/11 06:50	10/14/11 14:10	1.00

Lab Sample ID: 11J3131-BS1

Matrix: Water

Analysis Batch: U018123

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11J3131_P

						ricp baton. riodioi_i
Spike	LCS	LCS				% Rec.
Added	Result	Qualifier	Unit	D	% Rec	Limits
0.500	0.395	MNR1	ug/L		79	38 - 128
0.500	0.220	MNR1	ug/L		44	35 - 145
0.500	0.475	MNR1	ug/L		95	47 - 136
0.500	0.505	MNR1	ug/L		101	50 - 140
0.500	0.495	MNR1	ug/L		99	50 - 138
0.500	0.490	MNR1	ug/L		98	49 - 137
0.500	0.480	MNR1	ug/L		96	46 - 143
0.500	0.480	MNR1	ug/L		96	51 - 150
0.500	0.465	MNR1	ug/L		93	49 - 138
0.500	0.475	MNR1	ug/L		95	33 _ 150
0.500	0.475	MNR1	ug/L		95	49 - 136
0.500	0.475	MNR1	ug/L		95	10 - 150
0.500	0.465	MNR1	ug/L		93	11 - 150
0.500	0.400	MNR1	ug/L		80	43 - 150
0.500	0.490	MNR1	ug/L		98	54 - 150
0.500	0.470	MNR1	ug/L		94	50 - 150
0.500	0.505	E MNR1	ug/L		101	50 - 147
	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Added Result 0.500 0.395 0.500 0.220 0.500 0.475 0.500 0.505 0.500 0.495 0.500 0.480 0.500 0.480 0.500 0.465 0.500 0.475 0.500 0.475 0.500 0.475 0.500 0.465 0.500 0.465 0.500 0.400 0.500 0.490 0.500 0.470	Added Result Qualifier 0.500 0.395 MNR1 0.500 0.220 MNR1 0.500 0.475 MNR1 0.500 0.505 MNR1 0.500 0.495 MNR1 0.500 0.490 MNR1 0.500 0.480 MNR1 0.500 0.480 MNR1 0.500 0.465 MNR1 0.500 0.475 MNR1 0.500 0.475 MNR1 0.500 0.465 MNR1 0.500 0.465 MNR1 0.500 0.490 MNR1 0.500 0.490 MNR1 0.500 0.490 MNR1 0.500 0.470 MNR1 0.500 0.470 MNR1	Added Result Qualifier Unit 0.500 0.395 MNR1 ug/L 0.500 0.220 MNR1 ug/L 0.500 0.475 MNR1 ug/L 0.500 0.505 MNR1 ug/L 0.500 0.495 MNR1 ug/L 0.500 0.490 MNR1 ug/L 0.500 0.480 MNR1 ug/L 0.500 0.480 MNR1 ug/L 0.500 0.465 MNR1 ug/L 0.500 0.475 MNR1 ug/L 0.500 0.475 MNR1 ug/L 0.500 0.475 MNR1 ug/L 0.500 0.465 MNR1 ug/L 0.500 0.470 MNR1 ug/L 0.500 0.490 MNR1 ug/L 0.500 0.470 MNR1 ug/L	Added Result Qualifier Unit D 0.500 0.395 MNR1 ug/L 0.500 0.220 MNR1 ug/L 0.500 0.475 MNR1 ug/L 0.500 0.505 MNR1 ug/L 0.500 0.495 MNR1 ug/L 0.500 0.480 MNR1 ug/L 0.500 0.480 MNR1 ug/L 0.500 0.465 MNR1 ug/L 0.500 0.475 MNR1 ug/L 0.500 0.475 MNR1 ug/L 0.500 0.475 MNR1 ug/L 0.500 0.465 MNR1 ug/L 0.500 0.465 MNR1 ug/L 0.500 0.465 MNR1 ug/L 0.500 0.490 MNR1 ug/L 0.500 0.490 MNR1 ug/L 0.500 0.470 MNR1 ug/L	Spike LCS LCS Added Result Qualifier Unit D % Rec 0.500 0.395 MNR1 ug/L 79 0.500 0.220 MNR1 ug/L 44 0.500 0.475 MNR1 ug/L 95 0.500 0.505 MNR1 ug/L 99 0.500 0.495 MNR1 ug/L 98 0.500 0.490 MNR1 ug/L 96 0.500 0.480 MNR1 ug/L 93 0.500 0.465 MNR1 ug/L 95 0.500 0.475 MNR1 ug/L 95 0.500 0.475 MNR1 ug/L 95 0.500 0.475 MNR1 ug/L 95 0.500 0.465 MNR1 ug/L 95 0.500 0.465 MNR1 ug/L 93 0.500 0.465 MNR1 ug/L 93

QC Sample Results

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B (Continued)

Lab Sample ID: 11J3131-BS1

Matrix: Water

Analysis Batch: U018123

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11J3131_P

Spike	LCS	LCS				% Rec.	
Added	Result	Qualifier	Unit	D	% Rec	Limits	
0.500	0.420	MNR1	ug/L		84	43 - 146	
0.500	0.475	MNR1	ug/L		95	50 - 136	
0.500	0.445	E MNR1	ug/L		89	35 - 150	
	Added 0.500 0.500	Added Result 0.500 0.420 0.500 0.475	Added Result Qualifier 0.500 0.420 MNR1 0.500 0.475 MNR1	Added Result Qualifier Unit 0.500 0.420 MNR1 ug/L 0.500 0.475 MNR1 ug/L	Added Result Qualifier Unit D 0.500 0.420 MNR1 ug/L 0.500 0.475 MNR1 ug/L	Added Result Qualifier Unit D % Rec 0.500 0.420 MNR1 ug/L 84 0.500 0.475 MNR1 ug/L 95	Added Result Qualifier Unit D % Rec Limits 0.500 0.420 MNR1 ug/L 84 43 - 146 0.500 0.475 MNR1 ug/L 95 50 - 136

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Tetrachloro-meta-xylene	107		38 - 150
Decachlorobiphenyl	82		10 - 141

Lab Sample ID: 11J3131-BS2

Matrix: Water

Analysis Batch: U018123

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11J3131_P

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Chlordane	5.00	4.59	MNR1	ug/L		92	49 - 150	
Toxaphene	10.0	9.80	MNR1	ug/L		98	34 - 150	

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Tetrachloro-meta-xylene	91		38 - 150
Decachlorobiphenyl	61		10 - 141

Lab Sample ID: 11J3290-BLK1

Matrix: Soil

Analysis Batch: U018364

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 11J3290_P Rlank Blank

	Blank B	Blank					
Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	0.00170	mg/kg wet	1	10/15/11 08:19	10/18/11 20:51	1.00
delta-BHC	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
alpha-BHC	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
beta-BHC	ND	0.00330	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
gamma-BHC (Lindane)	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
alpha-Chlordane	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
gamma-Chlordane	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Chlordane	ND	0.0667	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
4,4'-DDD	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
4,4'-DDE	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
4,4'-DDT	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Dieldrin	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Endosulfan I	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Endosulfan II	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Endosulfan sulfate	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Endrin	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Endrin aldehyde	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Endrin ketone	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Heptachlor	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Heptachlor epoxide	ND	0.00170	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Methoxychlor	ND	0.00330	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00
Toxaphene	ND	0.0667	mg/kg wet		10/15/11 08:19	10/18/11 20:51	1.00

Client: Hart & Hickman (2162) Project/Site: BDP-005

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B (Continued)

Lab Sample ID: 11J3290-BLK1

Matrix: Soil

Analysis Batch: U018364

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 11J3290_P

Blank Blank

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-meta-xylene	88	21 - 145	10/15/11 08:19	10/18/11 20:51	1.00
Decachlorobiphenyl	98	25 - 150	10/15/11 08:19	10/18/11 20:51	1.00

Lab Sample ID: 11J3290-BS1

Matrix: Soil

Analysis Batch: U018364

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11J3290_P

	Spike	Spike LCS LC					% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Aldrin	0.0167	0.0130	MNR	mg/kg wet		78	47 - 132
delta-BHC	0.0167	0.00567	MNR	mg/kg wet		34	10 - 149
alpha-BHC	0.0167	0.0123	MNR	mg/kg wet		74	45 - 128
beta-BHC	0.0167	0.0143	MNR	mg/kg wet		86	48 - 135
gamma-BHC (Lindane)	0.0167	0.0127	MNR	mg/kg wet		76	48 - 131
alpha-Chlordane	0.0167	0.0137	MNR	mg/kg wet		82	47 - 134
gamma-Chlordane	0.0167	0.0137	MNR	mg/kg wet		82	48 - 145
4,4'-DDD	0.0167	0.0133	MNR	mg/kg wet		80	46 - 149
4,4'-DDE	0.0167	0.0137	MNR	mg/kg wet		82	48 - 139
4,4'-DDT	0.0167	0.0133	MNR	mg/kg wet		80	24 - 150
Dieldrin	0.0167	0.0133	MNR	mg/kg wet		80	42 - 137
Endosulfan I	0.0167	0.0137	MNR	mg/kg wet		82	10 - 150
Endosulfan II	0.0167	0.0133	MNR	mg/kg wet		80	12 - 150
Endosulfan sulfate	0.0167	0.0117	MNR	mg/kg wet		70	36 - 148
Endrin	0.0167	0.0133	MNR	mg/kg wet		80	46 - 145
Endrin aldehyde	0.0167	0.0140	MNR	mg/kg wet		84	48 - 150
Endrin ketone	0.0167	0.0140	MNR	mg/kg wet		84	43 - 150
Heptachlor	0.0167	0.0133	MNR	mg/kg wet		80	45 - 140
Heptachlor epoxide	0.0167	0.0133	MNR	mg/kg wet		80	47 - 133
Methoxychlor	0.0167	0.0140	MNR	mg/kg wet		84	23 - 150

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Tetrachloro-meta-xylene	76	,	21 - 145
Decachlorobiphenyl	94		25 - 150

Lab Sample ID: 11J3290-BS2

Matrix: Soil

Analysis Batch: U018364

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11J3290_P

	Spike	LUS	LUS				% Rec.	
Analyte	Added		Qualifier	Unit	D	% Rec	Limits	
Chlordane	0.167	0.173	MNR	mg/kg wet		104	50 - 150	
Toxaphene	0.333	0.417	MNR	mg/kg wet		125	10 - 150	

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Tetrachloro-meta-xylene	81		21 - 145
Decachlorobiphenyl	101		25 - 150

QC Sample Results

Client: Hart & Hickman (2162) Project/Site: BDP-005 TestAmerica Job ID: NUJ1766

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B (Continued)

Lab Sample ID: 11J3934-BLK1

Matrix: Water

Analysis Batch: U018364

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 11J3934_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
delta-BHC	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
alpha-BHC	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
beta-BHC	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
gamma-BHC (Lindane)	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
alpha-Chlordane	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
gamma-Chlordane	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Chlordane	ND		3.00		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
4,4'-DDD	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
4,4'-DDE	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
4,4'-DDT	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Dieldrin	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Endosulfan I	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Endosulfan II	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Endosulfan sulfate	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Endrin	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Endrin aldehyde	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Endrin ketone	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Heptachlor	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Heptachlor epoxide	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Methoxychlor	ND		0.0500		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
Toxaphene	ND		2.00		ug/L		10/17/11 10:00	10/18/11 21:34	1.00
	Blank	Blank							
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

38 - 150

10 - 141

100

Lab Sample ID: 11J3934-BS1

Matrix: Water

Tetrachloro-meta-xylene

Decachlorobiphenyl

Analysis Batch: U018364

Client Sample ID: Lab Control Sample

10/18/11 21:34

10/17/11 10:00 10/18/11 21:34

10/17/11 10:00

Prep Type: Total Prep Batch: 11J3934_P

1.00

1.00

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Aldrin	0.500	0.330	MNR1	ug/L		66	38 - 128
delta-BHC	0.500	0.190	MNR1	ug/L		38	35 - 145
alpha-BHC	0.500	0.425	MNR1	ug/L		85	47 - 136
beta-BHC	0.500	0.485	MNR1	ug/L		97	50 - 140
gamma-BHC (Lindane)	0.500	0.445	MNR1	ug/L		89	50 - 138
alpha-Chlordane	0.500	0.445	MNR1	ug/L		89	49 - 137
gamma-Chlordane	0.500	0.440	MNR1	ug/L		88	46 - 143
4,4'-DDD	0.500	0.465	MNR1	ug/L		93	51 - 150
4,4'-DDE	0.500	0.450	MNR1	ug/L		90	49 - 138
4,4'-DDT	0.500	0.465	MNR1	ug/L		93	33 - 150
Dieldrin	0.500	0.465	MNR1	ug/L		93	49 - 136
Endosulfan I	0.500	0.470	MNR1	ug/L		94	10 - 150
Endosulfan II	0.500	0.465	MNR1	ug/L		93	11 - 150
Endosulfan sulfate	0.500	0.405	MNR1	ug/L		81	43 - 150
Endrin	0.500	0.470	MNR1	ug/L		94	54 - 150
Endrin aldehyde	0.500	0.480	MNR1	ug/L		96	50 - 150
Endrin ketone	0.500	0.480	MNR1	ug/L		96	50 - 147

TestAmerica Nashville 10/20/2011 Client: Hart & Hickman (2162) Project/Site: BDP-005

Method: SW846 8081B - Organochlorine Pesticides by EPA Method 8081B (Continued)

Lab Sample ID: 11J3934-BS1

Matrix: Water

Analysis Batch: U018364

Client	Sample	ID:	Lab	Control	Sample	е

Prep Type: Total

Prep Batch: 11J3934_P

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Heptachlor	0.500	0.365	MNR1	ug/L		73	43 - 146	
Heptachlor epoxide	0.500	0.455	MNR1	ug/L		91	50 - 136	
Methoxychlor	0.500	0.475	MNR1	ug/L		95	35 - 150	

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Tetrachloro-meta-xylene	98		38 - 150
Decachlorobiphenyl	103		10 - 141

Lab Sample ID: 11J3934-BS2

Matrix: Water

Analysis Batch: U018364

Client S	ample ID	Lab	Control	Sample
----------	----------	-----	---------	--------

Prep Type: Total

Prep Batch: 11J3934_P

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Chlordane	5.00	5.26	MNR1	ug/L		105	49 - 150	
Toxaphene	10.0	14.7	MNR1	ug/L		147	34 - 150	

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Tetrachloro-meta-xylene	102		38 - 150
Decachlorobiphenyl	95		10 - 141

Method: SW-846 - General Chemistry Parameters

Lab Sample ID: 11J3893-DUP1

Matrix: Soil

Analysis Batch: 11J3893

Client Sample ID: Duplicate
Prep Type: Total

Prep Batch: 11J3893_P

AnalyteResult
9 Dry SolidsQualifierDuplicateUnit
8 Result
8 Result
9 Result

QC Association Summary

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Pesticides

Analysis	Batch:	U018123
----------	--------	---------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11J3131-BLK1	Method Blank	Total	Water	SW846 8081B	11J3131_P
11J3131-BS1	Lab Control Sample	Total	Water	SW846 8081B	11J3131_P
11J3131-BS2	Lab Control Sample	Total	Water	SW846 8081B	11J3131_P
NUJ1766-01	PCS-1W	Total	Water	SW846 8081B	11J3131_P
NUJ1766-03	PCS-2W	Total	Water	SW846 8081B	11J3131_P
NUJ1766-05	PCS-3W	Total	Water	SW846 8081B	11J3131_P
NUJ1766-08	MW-1	Total	Water	SW846 8081B	11J3131_P

Analysis Batch: U018228

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
NUJ1766-12 - RE1	MW-4	Total	Water	SW846 8081B	11J3131_P

Analysis Batch: U018364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11J3290-BLK1	Method Blank	Total	Soil	SW846 8081B	11J3290_P
11J3290-BS1	Lab Control Sample	Total	Soil	SW846 8081B	11J3290_P
11J3290-BS2	Lab Control Sample	Total	Soil	SW846 8081B	11J3290_P
11J3934-BLK1	Method Blank	Total	Water	SW846 8081B	11J3934_P
11J3934-BS1	Lab Control Sample	Total	Water	SW846 8081B	11J3934_P
11J3934-BS2	Lab Control Sample	Total	Water	SW846 8081B	11J3934_P
NUJ1766-02 - RE1	PCS-1S	Total	Soil	SW846 8081B	11J3290_P
NUJ1766-04 - RE1	PCS-2S	Total	Soil	SW846 8081B	11J3290_P
NUJ1766-06 - RE1	PCS-3S	Total	Soil	SW846 8081B	11J3290_P
NUJ1766-07 - RE1	PCS-4S	Total	Soil	SW846 8081B	11J3290_P
NUJ1766-09 - RE1	MW-3	Total	Water	SW846 8081B	11J3934_P
NUJ1766-10 - RE1	MW-6	Total	Water	SW846 8081B	11J3934_P
NUJ1766-11 - RE1	MW-2	Total	Water	SW846 8081B	11J3934_P
NUJ1766-13 - RE2	MW-7	Total	Water	SW846 8081B	11J3131_P
NUJ1766-14 - RE1	MW-5	Total	Water	SW846 8081B	11J3934_P

Prep Batch: 11J3131_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11J3131-BLK1	Method Blank	Total	Water	EPA 3510C	
11J3131-BS1	Lab Control Sample	Total	Water	EPA 3510C	
11J3131-BS2	Lab Control Sample	Total	Water	EPA 3510C	
NUJ1766-01	PCS-1W	Total	Water	EPA 3510C	
NUJ1766-03	PCS-2W	Total	Water	EPA 3510C	
NUJ1766-05	PCS-3W	Total	Water	EPA 3510C	
NUJ1766-08	MW-1	Total	Water	EPA 3510C	
NUJ1766-12 - RE1	MW-4	Total	Water	EPA 3510C	
NUJ1766-13 - RE2	MW-7	Total	Water	EPA 3510C	

Prep Batch: 11J3290_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11J3290-BLK1	Method Blank	Total	Soil	EPA 3550C	
11J3290-BS1	Lab Control Sample	Total	Soil	EPA 3550C	
11J3290-BS2	Lab Control Sample	Total	Soil	EPA 3550C	
NUJ1766-02 - RE1	PCS-1S	Total	Soil	EPA 3550C	
NUJ1766-04 - RE1	PCS-2S	Total	Soil	EPA 3550C	
NUJ1766-06 - RE1	PCS-3S	Total	Soil	EPA 3550C	
NUJ1766-07 - RE1	PCS-4S	Total	Soil	EPA 3550C	

QC Association Summary

Client: Hart & Hickman (2162) Project/Site: BDP-005 TestAmerica Job ID: NUJ1766

Pesticides (Continued)

Prep Batch: 11J3934_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11J3934-BLK1	Method Blank	Total	Water	EPA 3510C	
11J3934-BS1	Lab Control Sample	Total	Water	EPA 3510C	
11J3934-BS2	Lab Control Sample	Total	Water	EPA 3510C	
NUJ1766-09 - RE1	MW-3	Total	Water	EPA 3510C	
NUJ1766-10 - RE1	MW-6	Total	Water	EPA 3510C	
NUJ1766-11 - RE1	MW-2	Total	Water	EPA 3510C	
NUJ1766-14 - RE1	MW-5	Total	Water	EPA 3510C	

Extractions

Analysis Batch: 11J3893

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11J3893-DUP1	Duplicate	Total	Soil	SW-846	11J3893_P
NUJ1766-02	PCS-1S	Total	Soil	SW-846	11J3893_P
NUJ1766-04	PCS-2S	Total	Soil	SW-846	11J3893_P
NUJ1766-06	PCS-3S	Total	Soil	SW-846	11J3893_P
NUJ1766-07	PCS-4S	Total	Soil	SW-846	11J3893_P

Prep Batch: 11J3893_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11J3893-DUP1	Duplicate	Total	Soil	% Solids	
NUJ1766-02	PCS-1S	Total	Soil	% Solids	
NUJ1766-04	PCS-2S	Total	Soil	% Solids	
NUJ1766-06	PCS-3S	Total	Soil	% Solids	
NUJ1766-07	PCS-4S	Total	Soil	% Solids	

Lab Chronicle

Client: Hart & Hickman (2162) Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Client Sample ID: PCS-1W

Date Collected: 10/10/11 14:55 Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-01

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C		1.02	11J3131_P	10/13/11 15:44	RCH2	TAL NSH
Total	Analysis	SW846 8081B		1.00	U018123	10/14/11 14:52	WAM	TAL NSH

Lab Sample ID: NUJ1766-02 Client Sample ID: PCS-1S

Date Collected: 10/10/11 15:00

Date Received: 10/13/11 07:40

Matrix: Soil

Percent Solids: 85.2

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Prep	EPA 3550C	RE1	0.994	11J3290_P	10/15/11 08:19	JJR	TAL NSH
Analysis	SW846 8081B	RE1	10.0	U018364	10/19/11 05:41	WAM	TAL NSH
Prep	% Solids		1.00	11J3893_P	10/17/11 17:00	RRS	TAL NSH
Analysis	SW-846		1.00	11J3893	10/18/11 13:53	RRS	TAL NSH
	Type Prep Analysis Prep	Type Method Prep EPA 3550C Analysis SW846 8081B Prep % Solids	Type Method Run Prep EPA 3550C RE1 Analysis SW846 8081B RE1 Prep % Solids	Type Method Run Factor Prep EPA 3550C RE1 0.994 Analysis SW846 8081B RE1 10.0 Prep % Solids 1.00	Type Method Run Factor Number Prep EPA 3550C RE1 0.994 11J3290_P Analysis SW846 8081B RE1 10.0 U018364 Prep % Solids 1.00 11J3893_P	Type Method Run Factor Number Or Analyzed Prep EPA 3550C RE1 0.994 11J3290_P 10/15/11 08:19 Analysis SW846 8081B RE1 10.0 U018364 10/19/11 05:41 Prep % Solids 1.00 11J3893_P 10/17/11 17:00	Type Method Run Factor Number Or Analyzed Analyst Prep EPA 3550C RE1 0.994 11J3290_P 10/15/11 08:19 JJR Analysis SW846 8081B RE1 10.0 U018364 10/19/11 05:41 WAM Prep % Solids 1.00 11J3893_P 10/17/11 17:00 RRS

Client Sample ID: PCS-2W

Date Collected: 10/10/11 15:20 Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-03

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C		1.02	11J3131_P	10/13/11 15:44	RCH2	TAL NSH
Total	Analysis	SW846 8081B		1.00	U018123	10/14/11 15:07	WAM	TAL NSH

Client Sample ID: PCS-2S

Date Collected: 10/10/11 15:25

Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-04

Matrix: Soil

Percent Solids: 81.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3550C	RE1	0.997	11J3290_P	10/15/11 08:19	JJR	TAL NSH
Total	Analysis	SW846 8081B	RE1	10.0	U018364	10/19/11 05:55	WAM	TAL NSH
Total	Prep	% Solids		1.00	11J3893_P	10/17/11 17:00	RRS	TAL NSH
Total	Analysis	SW-846		1.00	11J3893	10/18/11 13:53	RRS	TAL NSH

Client Sample ID: PCS-3W

Date Collected: 10/10/11 15:50

Date Received: 10/13/11 07:40

Lab Callipic ID. 1100 1700 00	Lab Sam	ple ID:	NUJ1766-05
-------------------------------	---------	---------	------------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C		1.01	11J3131_P	10/13/11 15:44	RCH2	TAL NSH
Total	Analysis	SW846 8081B		1.00	U018123	10/14/11 15:21	WAM	TAL NSH

Lab Chronicle

Client: Hart & Hickman (2162) Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Lab Sample ID: NUJ1766-06

Matrix: Soil

Percent Solids: 79

D	T	Batch	n B
Date	Received:	10/13/11	07:40
	Collected:		

Client Sample ID: PCS-3S

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3550C	RE1	0.985	11J3290_P	10/15/11 08:19	JJR	TAL NSH
Total	Analysis	SW846 8081B	RE1	10.0	U018364	10/19/11 06:10	WAM	TAL NSH
Total	Prep	% Solids		1.00	11J3893_P	10/17/11 17:00	RRS	TAL NSH
Total	Analysis	SW-846		1.00	11J3893	10/18/11 13:53	RRS	TAL NSH

Client Sample ID: PCS-4S Date Collected: 10/10/11 16:15 Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-07

Matrix: Soil

8

Percent Solids: 80.9

TAL NSH

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3550C	RE1	0.986	11J3290_P	10/15/11 08:19	JJR	TAL NSH
Total	Analysis	SW846 8081B	RE1	10.0	U018364	10/19/11 06:24	WAM	TAL NSH
Total	Prep	% Solids		1.00	11J3893 P	10/17/11 17:00	RRS	TAL NSH

1.00

11J3893

10/18/11 13:53

Client Sample ID: MW-1

Total

Lab Sample ID: NUJ1766-08

Matrix: Water

Date Collected: 10/11/11 12:10 Date Received: 10/13/11 07:40

SW-846

Analysis

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C		1.00	11J3131_P	10/13/11 15:44	RCH2	TAL NSH
Total	Analysis	SW846 8081B		1.00	U018123	10/14/11 15:35	WAM	TAL NSH

Client Sample ID: MW-3 Date Collected: 10/11/11 12:20

Date Received: 10/13/11 07:40

Lab Sample ID: NUJ1766-09

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C	RE1	1.82	11J3934_P	10/17/11 10:00	RCH2	TAL NSH
Total	Analysis	SW846 8081B	RE1	1.00	U018364	10/18/11 22:17	WAM	TAL NSH

Client Sample ID: MW-6

Lab Sample ID: NUJ1766-10

Matrix: Water

Date Collected: 10/11/11 12:35 Date Received: 10/13/11 07:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C	RE1	1.00	11J3934_P	10/17/11 10:00	RCH2	TAL NSH
Total	Analysis	SW846 8081B	RE1	1.00	U018364	10/18/11 22:31	WAM	TAL NSH

Lab Chronicle

Client: Hart & Hickman (2162)

Project/Site: BDP-005

TestAmerica Job ID: NUJ1766

Client Sample ID: MW-2

Date Collected: 10/11/11 12:55 Date Received: 10/13/11 07:40 Lab Sample ID: NUJ1766-11

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C	RE1	1.00	11J3934_P	10/17/11 10:00	RCH2	TAL NSH
Total	Analysis	SW846 8081B	RE1	1.00	U018364	10/18/11 22:45	WAM	TAL NSH

Client Sample ID: MW-4

Date Collected: 10/11/11 13:25 Date Received: 10/13/11 07:40 Lab Sample ID: NUJ1766-12

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C	RE1	1.00	11J3131_P	10/13/11 15:44	RCH2	TAL NSH
Total	Analysis	SW846 8081B	RE1	5.00	U018228	10/17/11 12:47	WAM	TAL NSH

Client Sample ID: MW-7

Date Collected: 10/11/11 13:45 Date Received: 10/13/11 07:40 Lab Sample ID: NUJ1766-13

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C	RE2	1.00	11J3131_P	10/13/11 15:44	RCH2	TAL NSH
Total	Analysis	SW846 8081B	RE2	20.0	U018364	10/18/11 20:37	WAM	TAL NSH

Client Sample ID: MW-5

Date Collected: 10/11/11 14:00

Date Received: 10/13/11 07:40

Edo Gailloid ID. 1100 1100 11	Lab	Sample	ID: N	UJ1766-	14
-------------------------------	-----	--------	-------	---------	----

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 3510C	RE1	1.01	11J3934_P	10/17/11 10:00	RCH2	TAL NSH
Total	Analysis	SW846 8081B	RE1	1.00	U018364	10/18/11 23:00	WAM	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Method Summary

Client: Hart & Hickman (2162) Project/Site: BDP-005

General Chemistry Parameters

TestAmerica Job ID: NUJ1766

Protocol Method **Method Description**

Laboratory TAL NSH

Organochlorine Pesticides by EPA Method 8081B

TAL NSH

Protocol References:

SW-846

SW846 8081B

Laboratory References:

TAL NSH ≈ TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Certification Summary

Client: Hart & Hickman (2162) Project/Site: BDP-005 TestAmerica Job ID: NUJ1766

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Nashville		ACIL		393
TestAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
TestAmerica Nashville	A2LA	WY UST		453.07
TestAmerica Nashville	AIHA	IHLAP		100790
TestAmerica Nashville	Alabama	State Program	4	41150
TestAmerica Nashville	Alaska	Alaska UST	10	UST-087
TestAmerica Nashville	Arizona	State Program	9	AZ0473
TestAmerica Nashville	Arkansas	State Program	6	88-0737
TestAmerica Nashville	CALA	CALA		3744
TestAmerica Nashville	California	NELAC	9	1168CA
TestAmerica Nashville	Colorado	State Program	8	N/A
TestAmerica Nashville	Connecticut	State Program	1	PH-0220
TestAmerica Nashville	Florida	NELAC	4	E87358
TestAmerica Nashville	Illinois	NELAC	5	200010
TestAmerica Nashville	Iowa	State Program	7	131
TestAmerica Nashville	Kansas	NELAC	7	E-10229
TestAmerica Nashville	Kentucky	Kentucky UST	4	19
TestAmerica Nashville	Kentucky	State Program	4	90038
TestAmerica Nashville	Louisiana	NELAC	6	30613
TestAmerica Nashville	Louisiana	NELAC	6	LA100011
estAmerica Nashville	Maryland	State Program	3	316
TestAmerica Nashville	Massachusetts	State Program	1	M-TN032
TestAmerica Nashville	Minnesota	NELAC	5	047-999-345
estAmerica Nashville	Mississippi	State Program	4	N/A
TestAmerica Nashville	Montana	MT DEQ UST	8	NA
estAmerica Nashville	New Hampshire	NELAC	1	2963
TestAmerica Nashville	New Jersey	NELAC	2	TN965
estAmerica Nashville	New York	NELAC	2	11342
TestAmerica Nashville	North Carolina	North Carolina DENR	4	387
estAmerica Nashville	North Dakota	State Program	8	R-146
TestAmerica Nashville	Ohio	OVAP	5	CL0033
TestAmerica Nashville	Oklahoma	State Program	6	9412
TestAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
TestAmerica Nashville	Rhode Island	State Program	1	LAO00268
TestAmerica Nashville	South Carolina	State Program	4	84009
TestAmerica Nashville	South Carolina	State Program	4	84009
TestAmerica Nashville	Tennessee	State Program	4	2008
TestAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
TestAmerica Nashville	USDA	USDA		S-48469
TestAmerica Nashville	Utah	NELAC	8	TAN
TestAmerica Nashville	Virginia	NELAC Secondary AB	3	460152
TestAmerica Nashville	Virginia	State Program	3	00323
TestAmerica Nashville	Washington	State Program	10	C789
TestAmerica Nashville	West Virginia	West Virginia DEP	3	219

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Nashville, TN

COOLER RECE!

Cooler Received/Opened On 10/13/2011 @ 0740	NUJ1/66
1. Tracking #(last 4 digits, FedEx)	
Courier: FedEx IR Gun ID_1474056	
2. Temperature of rep. sample or temp blank when opened: O. Lo Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	ES.NONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	ES.NONA
6. Were custody papers inside cooler?	YES. NO.NA
certify that I opened the cooler and answered questions 1-6 (intial)	F_
7. Were custody seals on containers: YES and Intact	YESNO
Were these signed and dated correctly?	YESNO(NA
8. Packing mat'l used? Bubblewrap Blastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: (Ce lce-pack lce (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	ESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ES.NONA
12. Did all container labels and tags agree with custody papers?	YES NO NA
13a. Were VOA vials received?	YES. NO. NA
b. Was there any observable headspace present in any VOA vial?	YESNO. NA
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence	e #_NA
I certify that I unloaded the cooler and answered questions 7-14 (intial)	F
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.NA
b. Did the bottle labels indicate that the correct preservatives were used	KES NO NA
16. Was residual chlorine present?	YESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	F
17. Were custody papers properly filled out (ink, signed, etc)?	YES NONA
18. Did you sign the custody papers in the appropriate place?	ESNONA
19. Were correct containers used for the analysis requested?	NONA
20. Was sufficient amount of sample sent in each container?	ES.NONA
Lertify that I entered this project into LIMS and answered questions 17-20 (intial)	0
Lertify that I attached a label with the unique LIMS number to each container (intial)	F
21 More than No. 0	2.

COOLER REC

Cooler Received/Opened On 10/13/2011 @ 0740	NO11766
1. Tracking # 1432 (last 4 digits, FedEx)	
Courier: FedEx IR Gun ID 1474056	
2. Temperature of rep. sample or temp blank when opened: 1.1 Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank froze	-2 VEC 110 .O
4. Were custody seals on outside of cooler?	_
If yes, how many and where:	(ESNONA
5. Were the seals intact, signed, and dated correctly? Not Outed.	YES NA
6. Were custody papers inside cooler?	SNONA
certify that I opened the cooler and answered questions 1-6 (intial)	SNONA
7. Were custody seals on containers: YES NO and Intact	VES NO SE
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Subblewrap Plastic bag Peanuts Vermiculite Foam Insert Pap	YESNO(NA)
9. Cooling process:	
10. Did all containers arrive in good condition (unbroken)?	
11. Were all container labels complete (#, date, signed, pres., etc)?	(ES).NONA
12. Did all container labels and tags agree with custody papers?	NONA
13a. Were VOA vials received?	YES NO NA
b. Was there any observable headspace present in any VOA vial?	YES(NO.).NA
14. Was there a Trip Blank in this	YESNONA
I certify that I unloaded the cooler and answered questions 7-14 (intial)	ce # NH
	_ _
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the second strips are strips and strips are strips.	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used16. Was residual chlorine present?	ES.NONA
	YESNONO
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	4
17. Were custody papers properly filled out (ink, signed, etc)?	NONA
18. Did you sign the custody papers in the appropriate place?	SNONA
19. Were correct containers used for the analysis requested?	NONA
20. Was sufficient amount of sample sent in each container?	€NONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	F
I certify that I attached a label with the unique LIMS number to each container (intial)	F
21. Were there Non-Conformance issues at login? YES. NO Was a PIPE generated? YES.	> "

COOLER RECEIPT FORM

NUJ1766 10/20/11 23 59

Cooler Received/Opened On 10/13/2011 @ 0840	
1. Tracking # 1672 (last 4 digits, FedEx)	
Courier: FedEx IR Gun ID 94660220	
2. Temperature of rep. sample or temp blank when opened: 2 7 Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank froz	
Were custody seals on outside of cooler?	
If yes, how many and where: (1) Front	ESNONA
5. Were the seals intact, signed, and dated correctly?	The Manne
6. Were custody papers inside cooler?	ES).NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	YES. NO.NA
7. Were custody seals on containers:	- Tuo
Were these signed and dated correctly?	YESNO
Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pa Cooling process:	YESNO
GCE) Ice-pack Ice (dis-	
10. Did all containers arrive in good condition (unbroken)?	, tronc
11. Were all container labels complete (#, date, signed, pres., etc)?	NONA
12. Did all container labels and tags agree with custody papers?	ES.NONA
13a. Were VOA vials received?	ESNONA
b. Was there any observable headspace present in any VOA vial?	YES NA
14. Was there a Trio Blank in this cools 2	YESNOKA
I certify that I unloaded the cooler and answered questions 7-14 (intial)	nce #
15a. On pres'd bottles, did pH test strips suggest process 7-14 (intial)	0
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level? b. Did the bottle labels indicate that the correct preservatives were used	YESNO.NA
16. Was residual chlorine present?	ESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	YESNO
17. Were custody papers properly filled out (ink, signed, etc)?	$-\mathcal{F}$
18. Did you sign the custody papers in the appropriate place?	ENONA
19. Were correct containers used for the analysis requested?	NONA
20. Was sufficient amount of sample sent in each container?	EDNONA
I certify that I entered this project into LIMS and	YES NONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial) L certify that I attached a label with the unique I the	5
I certify that I attached a label with the unique LIMS number to each container (intial) 21. Were there Non-Conformance issues at least 2 and 2.	<u>G</u>
21. Were there Non-Conformance issues at login? YESN Was a PIPE generated? YESN	. #

2

4

5

7

8

10

Cha NUJ1766 Cus 10/20/11 23 58

Temperature on Receipt ___

Drinking Water? Yes□ No 1

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Address		Projec	M	aft	3	n	He	++					Date 1 0/1/4	Chain of Custody Number
2923 STON St. SA	100	Telepi				Code,		Numbe	er				Lab Number	Page / of 2
Harr & Hickman Address 2923 STyn St. St. City Charlotk State Braight Name and Location (State)	Zip Code 28203	Site C			rno		Lab C	Contaci					Analysis (Attach list if more space is needed)	
Project Ivame and Location (State)	ru Salem, NC		r/Way	bill Nu	mber									Special Instructions/
Contract/Purchase Order/Quote No.				Ma	atrix					ers vativ		8/14		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on or	ne line) Date	Time	Arr	Aqueous	Sed.		Unpres.	H2SO4 HWO3	HCI	NBOH	ZnAc/ NaOH	30		* Simple full life
- PC5-(W	iofidia	1455		>			ζ.					K		
8 PC5-15	10/10/11	1500		C. 1	×		4					X		
0 PC5-2W	Ichola	1520		1			4		-			×		7
5 767-25	10/10/11	1525		200	<		x					X		
5 PLS - 3W	10/10/11	1550		*		,						×		
J PLS- 35	10/10/11			1	X		×					×		
+ pc5-45	10/10/11		-	30	((x		
mw-1	10/11/11	1210		ot .			×					X		1 15 liks
J MM-3	10/11/11	1220		x								×		1.5 1. Hrs
2 nw-6	10/11/11	1235		4			*					У		
= hw-2	10/11/11	1255		4			x					X		
5 MW-4	10/11/11	1325		X			4					X		
Possible Hazard Identification Non-Hazard Flammable Skin Irrita	ant T Paison R	Unkagu	1		Dispos			nica.	2021	D. I	ab [1 Arabira Far	(A fee may Months longer than	be assessed if samples are retained
Turn Around Time Required	Jr. 4. W. 10 11 11.			-			-				s (Spec		r Worths longer than	1 1 month)
24 Hours 48 Hours 7 Days	14 Days 21 C	Days Of Or	ther 2	760 17 6	Time	3 44)		Rece	ived	Bv				Data Time
Com Barrie		10/		-	07	w	-	Rece Rece	C	N	2	Cra	whood	10/12/11/14/8
2 Refinauished By Lypha Chauley	d	Date	2/1	11	Time	12	'						0	Date Time
3. Relinguished By		Date		1	Time		3	Rece	iv de	OV	1	27	>	107:40
Comments									M			1		15-13-11 07:40

NUJ1766 10/20/11 23 55

Temperature on Receipt _____

Drinking Water? Yes \(\text{No} \)

TestAmerica

The Leader in Environmental Testing

Har & Hiliman Address 2923 Styn St Stell Stell Zio			9CI Me	121	+	Bra	nbo	u	-					Date		Chain of Cus	tody Number
2923 Styn St Ste 1	Code		104	- :	586	rea Co	007	7		,				Lab Number			534
	28203	6	Conta	+ "	Bar	w	La	b Coi	ntact					Analysis (Attach list in	7)	Page	2 of 2
1	Salen, A	Carri	er/Wa	ybill i	Vumbe	er									TT	П	
\$ 00 Sa. 2				,	Matrix	,				ainer. ervati			*			Cond	cial Instructions/ ditions of Receipt
Sample I.D. No. and Description Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed.	Soil	Unpres.	H2SO4	0	HCI	-		808			* 54	ple full li
MW-7 MW-5	10/1/11	1345		×			,		4		105	1	×				
MW-S	10/11/11	1400	-	>			*		I				ox		+++	1.5	1.63
The state of the s					-	-			-	-							-23
No. of the Control of				-	-	+	-	-	+	+	+-	-	44				34 of
The Control of State				1	+	+			+	+	+		++-				900
						1		1	1	-	+-	1	1				
									1	1	H		++-		++	-	
				1	1								11		++	+	
			-	+	-			1	1						+		
			+	+	-	+-	4	-	+	-		1					
Sible Hazard Identification			Sar	mple	Dispo:	sal			1	_		1					
Non-Hazard			5+	end	LIA	Client		Dis DC R	posal	By La	b [] Arci	hive For _	Months (A fee ma	ny be asses an 1 month	ssed if samples a	re retained
C'A QUICKEG DU	□ 21 Days	Date			Time		-	. Rec	eiveo	By							
Emar Barner Supha Chargorol Johnshed By		10/13/ Date		1	Time	در	1	Rec	Peiveo	By	(الأ	any	gra		Date ONZ/11	14:48
dinquished By		Date	111	4	LQ.	12			eived							Date	Time
ments							-	•	1	m	-	5	7	3		Date 13-11	Time 07:40

Appendix B

Laboratory Explanation Letter on Chlordane

TestAmerica Laboratories, Inc.

In samples NUJ1766-12 & 13, there is a group of peaks showing up that seem to be associated with the high level of Dieldrin present. Because these peaks show up on the chromatogram at the same retention times as the Chlordane peaks, the presence of Chlordane is masked. At a higher dilution this interference is lessened and the presence of Chlordane can be properly evaluated. Therefore, the data was reported with elevated reporting limits for Chlordane. For future samples submitted from this site, the Lab has added a comment to the Pesticide test code stating that the lowest detection level possible must be obtained for Chlordane.

Sincerely,

KENNETH A. HAYES
Senior Project Manager

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Drive Nashville, TN 37204 Tel 615.301.5035 | Fax 615.726.3404